Evaluate
\frac{6x^{3}+17x^{2}-6x-14}{\left(x+3\right)\left(2x+1\right)}
Differentiate w.r.t. x
\frac{12x^{4}+84x^{3}+185x^{2}+158x+80}{\left(\left(x+3\right)\left(2x+1\right)\right)^{2}}
Graph
Share
Copied to clipboard
3x-3+\frac{1}{x+3}+1-\frac{3}{2x+1}
Combine 2x and x to get 3x.
3x-2+\frac{1}{x+3}-\frac{3}{2x+1}
Add -3 and 1 to get -2.
\frac{\left(3x-2\right)\left(x+3\right)}{x+3}+\frac{1}{x+3}-\frac{3}{2x+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x-2 times \frac{x+3}{x+3}.
\frac{\left(3x-2\right)\left(x+3\right)+1}{x+3}-\frac{3}{2x+1}
Since \frac{\left(3x-2\right)\left(x+3\right)}{x+3} and \frac{1}{x+3} have the same denominator, add them by adding their numerators.
\frac{3x^{2}+9x-2x-6+1}{x+3}-\frac{3}{2x+1}
Do the multiplications in \left(3x-2\right)\left(x+3\right)+1.
\frac{3x^{2}+7x-5}{x+3}-\frac{3}{2x+1}
Combine like terms in 3x^{2}+9x-2x-6+1.
\frac{\left(3x^{2}+7x-5\right)\left(2x+1\right)}{\left(x+3\right)\left(2x+1\right)}-\frac{3\left(x+3\right)}{\left(x+3\right)\left(2x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+3 and 2x+1 is \left(x+3\right)\left(2x+1\right). Multiply \frac{3x^{2}+7x-5}{x+3} times \frac{2x+1}{2x+1}. Multiply \frac{3}{2x+1} times \frac{x+3}{x+3}.
\frac{\left(3x^{2}+7x-5\right)\left(2x+1\right)-3\left(x+3\right)}{\left(x+3\right)\left(2x+1\right)}
Since \frac{\left(3x^{2}+7x-5\right)\left(2x+1\right)}{\left(x+3\right)\left(2x+1\right)} and \frac{3\left(x+3\right)}{\left(x+3\right)\left(2x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{6x^{3}+3x^{2}+14x^{2}+7x-10x-5-3x-9}{\left(x+3\right)\left(2x+1\right)}
Do the multiplications in \left(3x^{2}+7x-5\right)\left(2x+1\right)-3\left(x+3\right).
\frac{6x^{3}+17x^{2}-6x-14}{\left(x+3\right)\left(2x+1\right)}
Combine like terms in 6x^{3}+3x^{2}+14x^{2}+7x-10x-5-3x-9.
\frac{6x^{3}+17x^{2}-6x-14}{2x^{2}+7x+3}
Expand \left(x+3\right)\left(2x+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}