Solve for x (complex solution)
x=\frac{\sqrt{39}i}{6}+\frac{1}{2}\approx 0.5+1.040833i
x=-\frac{\sqrt{39}i}{6}+\frac{1}{2}\approx 0.5-1.040833i
Graph
Share
Copied to clipboard
-6x^{2}+11x-4=-6x+11x+4
Use the distributive property to multiply 2x-1 by -3x+4 and combine like terms.
-6x^{2}+11x-4=5x+4
Combine -6x and 11x to get 5x.
-6x^{2}+11x-4-5x=4
Subtract 5x from both sides.
-6x^{2}+6x-4=4
Combine 11x and -5x to get 6x.
-6x^{2}+6x-4-4=0
Subtract 4 from both sides.
-6x^{2}+6x-8=0
Subtract 4 from -4 to get -8.
x=\frac{-6±\sqrt{6^{2}-4\left(-6\right)\left(-8\right)}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, 6 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-6\right)\left(-8\right)}}{2\left(-6\right)}
Square 6.
x=\frac{-6±\sqrt{36+24\left(-8\right)}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-6±\sqrt{36-192}}{2\left(-6\right)}
Multiply 24 times -8.
x=\frac{-6±\sqrt{-156}}{2\left(-6\right)}
Add 36 to -192.
x=\frac{-6±2\sqrt{39}i}{2\left(-6\right)}
Take the square root of -156.
x=\frac{-6±2\sqrt{39}i}{-12}
Multiply 2 times -6.
x=\frac{-6+2\sqrt{39}i}{-12}
Now solve the equation x=\frac{-6±2\sqrt{39}i}{-12} when ± is plus. Add -6 to 2i\sqrt{39}.
x=-\frac{\sqrt{39}i}{6}+\frac{1}{2}
Divide -6+2i\sqrt{39} by -12.
x=\frac{-2\sqrt{39}i-6}{-12}
Now solve the equation x=\frac{-6±2\sqrt{39}i}{-12} when ± is minus. Subtract 2i\sqrt{39} from -6.
x=\frac{\sqrt{39}i}{6}+\frac{1}{2}
Divide -6-2i\sqrt{39} by -12.
x=-\frac{\sqrt{39}i}{6}+\frac{1}{2} x=\frac{\sqrt{39}i}{6}+\frac{1}{2}
The equation is now solved.
-6x^{2}+11x-4=-6x+11x+4
Use the distributive property to multiply 2x-1 by -3x+4 and combine like terms.
-6x^{2}+11x-4=5x+4
Combine -6x and 11x to get 5x.
-6x^{2}+11x-4-5x=4
Subtract 5x from both sides.
-6x^{2}+6x-4=4
Combine 11x and -5x to get 6x.
-6x^{2}+6x=4+4
Add 4 to both sides.
-6x^{2}+6x=8
Add 4 and 4 to get 8.
\frac{-6x^{2}+6x}{-6}=\frac{8}{-6}
Divide both sides by -6.
x^{2}+\frac{6}{-6}x=\frac{8}{-6}
Dividing by -6 undoes the multiplication by -6.
x^{2}-x=\frac{8}{-6}
Divide 6 by -6.
x^{2}-x=-\frac{4}{3}
Reduce the fraction \frac{8}{-6} to lowest terms by extracting and canceling out 2.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-\frac{4}{3}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=-\frac{4}{3}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=-\frac{13}{12}
Add -\frac{4}{3} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=-\frac{13}{12}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{13}{12}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{39}i}{6} x-\frac{1}{2}=-\frac{\sqrt{39}i}{6}
Simplify.
x=\frac{\sqrt{39}i}{6}+\frac{1}{2} x=-\frac{\sqrt{39}i}{6}+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}