Solve for x
x=-\frac{3y-7}{2\left(1-3y\right)}
y\neq \frac{1}{3}
Solve for y
y=-\frac{2x-7}{3\left(1-2x\right)}
x\neq \frac{1}{2}
Graph
Share
Copied to clipboard
-6xy+2x+3y-1=6
Use the distributive property to multiply 2x-1 by -3y+1.
-6xy+2x-1=6-3y
Subtract 3y from both sides.
-6xy+2x=6-3y+1
Add 1 to both sides.
-6xy+2x=7-3y
Add 6 and 1 to get 7.
\left(-6y+2\right)x=7-3y
Combine all terms containing x.
\left(2-6y\right)x=7-3y
The equation is in standard form.
\frac{\left(2-6y\right)x}{2-6y}=\frac{7-3y}{2-6y}
Divide both sides by -6y+2.
x=\frac{7-3y}{2-6y}
Dividing by -6y+2 undoes the multiplication by -6y+2.
x=\frac{7-3y}{2\left(1-3y\right)}
Divide 7-3y by -6y+2.
-6xy+2x+3y-1=6
Use the distributive property to multiply 2x-1 by -3y+1.
-6xy+3y-1=6-2x
Subtract 2x from both sides.
-6xy+3y=6-2x+1
Add 1 to both sides.
-6xy+3y=7-2x
Add 6 and 1 to get 7.
\left(-6x+3\right)y=7-2x
Combine all terms containing y.
\left(3-6x\right)y=7-2x
The equation is in standard form.
\frac{\left(3-6x\right)y}{3-6x}=\frac{7-2x}{3-6x}
Divide both sides by -6x+3.
y=\frac{7-2x}{3-6x}
Dividing by -6x+3 undoes the multiplication by -6x+3.
y=\frac{7-2x}{3\left(1-2x\right)}
Divide 7-2x by -6x+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}