Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-4x+1-169=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
4x^{2}-4x-168=0
Subtract 169 from 1 to get -168.
x^{2}-x-42=0
Divide both sides by 4.
a+b=-1 ab=1\left(-42\right)=-42
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-42. To find a and b, set up a system to be solved.
1,-42 2,-21 3,-14 6,-7
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -42.
1-42=-41 2-21=-19 3-14=-11 6-7=-1
Calculate the sum for each pair.
a=-7 b=6
The solution is the pair that gives sum -1.
\left(x^{2}-7x\right)+\left(6x-42\right)
Rewrite x^{2}-x-42 as \left(x^{2}-7x\right)+\left(6x-42\right).
x\left(x-7\right)+6\left(x-7\right)
Factor out x in the first and 6 in the second group.
\left(x-7\right)\left(x+6\right)
Factor out common term x-7 by using distributive property.
x=7 x=-6
To find equation solutions, solve x-7=0 and x+6=0.
4x^{2}-4x+1-169=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
4x^{2}-4x-168=0
Subtract 169 from 1 to get -168.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4\left(-168\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -4 for b, and -168 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4\left(-168\right)}}{2\times 4}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-16\left(-168\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-4\right)±\sqrt{16+2688}}{2\times 4}
Multiply -16 times -168.
x=\frac{-\left(-4\right)±\sqrt{2704}}{2\times 4}
Add 16 to 2688.
x=\frac{-\left(-4\right)±52}{2\times 4}
Take the square root of 2704.
x=\frac{4±52}{2\times 4}
The opposite of -4 is 4.
x=\frac{4±52}{8}
Multiply 2 times 4.
x=\frac{56}{8}
Now solve the equation x=\frac{4±52}{8} when ± is plus. Add 4 to 52.
x=7
Divide 56 by 8.
x=-\frac{48}{8}
Now solve the equation x=\frac{4±52}{8} when ± is minus. Subtract 52 from 4.
x=-6
Divide -48 by 8.
x=7 x=-6
The equation is now solved.
4x^{2}-4x+1-169=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
4x^{2}-4x-168=0
Subtract 169 from 1 to get -168.
4x^{2}-4x=168
Add 168 to both sides. Anything plus zero gives itself.
\frac{4x^{2}-4x}{4}=\frac{168}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{4}{4}\right)x=\frac{168}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-x=\frac{168}{4}
Divide -4 by 4.
x^{2}-x=42
Divide 168 by 4.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=42+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=42+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{169}{4}
Add 42 to \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{169}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{13}{2} x-\frac{1}{2}=-\frac{13}{2}
Simplify.
x=7 x=-6
Add \frac{1}{2} to both sides of the equation.