Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-4x+1-12x=2\left(x-1\right)\left(x+1\right)+6x\left(x-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
4x^{2}-16x+1=2\left(x-1\right)\left(x+1\right)+6x\left(x-2\right)
Combine -4x and -12x to get -16x.
4x^{2}-16x+1=\left(2x-2\right)\left(x+1\right)+6x\left(x-2\right)
Use the distributive property to multiply 2 by x-1.
4x^{2}-16x+1=2x^{2}-2+6x\left(x-2\right)
Use the distributive property to multiply 2x-2 by x+1 and combine like terms.
4x^{2}-16x+1=2x^{2}-2+6x^{2}-12x
Use the distributive property to multiply 6x by x-2.
4x^{2}-16x+1=8x^{2}-2-12x
Combine 2x^{2} and 6x^{2} to get 8x^{2}.
4x^{2}-16x+1-8x^{2}=-2-12x
Subtract 8x^{2} from both sides.
-4x^{2}-16x+1=-2-12x
Combine 4x^{2} and -8x^{2} to get -4x^{2}.
-4x^{2}-16x+1-\left(-2\right)=-12x
Subtract -2 from both sides.
-4x^{2}-16x+1+2=-12x
The opposite of -2 is 2.
-4x^{2}-16x+1+2+12x=0
Add 12x to both sides.
-4x^{2}-16x+3+12x=0
Add 1 and 2 to get 3.
-4x^{2}-4x+3=0
Combine -16x and 12x to get -4x.
a+b=-4 ab=-4\times 3=-12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -4x^{2}+ax+bx+3. To find a and b, set up a system to be solved.
1,-12 2,-6 3,-4
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -12.
1-12=-11 2-6=-4 3-4=-1
Calculate the sum for each pair.
a=2 b=-6
The solution is the pair that gives sum -4.
\left(-4x^{2}+2x\right)+\left(-6x+3\right)
Rewrite -4x^{2}-4x+3 as \left(-4x^{2}+2x\right)+\left(-6x+3\right).
2x\left(-2x+1\right)+3\left(-2x+1\right)
Factor out 2x in the first and 3 in the second group.
\left(-2x+1\right)\left(2x+3\right)
Factor out common term -2x+1 by using distributive property.
x=\frac{1}{2} x=-\frac{3}{2}
To find equation solutions, solve -2x+1=0 and 2x+3=0.
4x^{2}-4x+1-12x=2\left(x-1\right)\left(x+1\right)+6x\left(x-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
4x^{2}-16x+1=2\left(x-1\right)\left(x+1\right)+6x\left(x-2\right)
Combine -4x and -12x to get -16x.
4x^{2}-16x+1=\left(2x-2\right)\left(x+1\right)+6x\left(x-2\right)
Use the distributive property to multiply 2 by x-1.
4x^{2}-16x+1=2x^{2}-2+6x\left(x-2\right)
Use the distributive property to multiply 2x-2 by x+1 and combine like terms.
4x^{2}-16x+1=2x^{2}-2+6x^{2}-12x
Use the distributive property to multiply 6x by x-2.
4x^{2}-16x+1=8x^{2}-2-12x
Combine 2x^{2} and 6x^{2} to get 8x^{2}.
4x^{2}-16x+1-8x^{2}=-2-12x
Subtract 8x^{2} from both sides.
-4x^{2}-16x+1=-2-12x
Combine 4x^{2} and -8x^{2} to get -4x^{2}.
-4x^{2}-16x+1-\left(-2\right)=-12x
Subtract -2 from both sides.
-4x^{2}-16x+1+2=-12x
The opposite of -2 is 2.
-4x^{2}-16x+1+2+12x=0
Add 12x to both sides.
-4x^{2}-16x+3+12x=0
Add 1 and 2 to get 3.
-4x^{2}-4x+3=0
Combine -16x and 12x to get -4x.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-4\right)\times 3}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, -4 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-4\right)\times 3}}{2\left(-4\right)}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+16\times 3}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2\left(-4\right)}
Multiply 16 times 3.
x=\frac{-\left(-4\right)±\sqrt{64}}{2\left(-4\right)}
Add 16 to 48.
x=\frac{-\left(-4\right)±8}{2\left(-4\right)}
Take the square root of 64.
x=\frac{4±8}{2\left(-4\right)}
The opposite of -4 is 4.
x=\frac{4±8}{-8}
Multiply 2 times -4.
x=\frac{12}{-8}
Now solve the equation x=\frac{4±8}{-8} when ± is plus. Add 4 to 8.
x=-\frac{3}{2}
Reduce the fraction \frac{12}{-8} to lowest terms by extracting and canceling out 4.
x=-\frac{4}{-8}
Now solve the equation x=\frac{4±8}{-8} when ± is minus. Subtract 8 from 4.
x=\frac{1}{2}
Reduce the fraction \frac{-4}{-8} to lowest terms by extracting and canceling out 4.
x=-\frac{3}{2} x=\frac{1}{2}
The equation is now solved.
4x^{2}-4x+1-12x=2\left(x-1\right)\left(x+1\right)+6x\left(x-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
4x^{2}-16x+1=2\left(x-1\right)\left(x+1\right)+6x\left(x-2\right)
Combine -4x and -12x to get -16x.
4x^{2}-16x+1=\left(2x-2\right)\left(x+1\right)+6x\left(x-2\right)
Use the distributive property to multiply 2 by x-1.
4x^{2}-16x+1=2x^{2}-2+6x\left(x-2\right)
Use the distributive property to multiply 2x-2 by x+1 and combine like terms.
4x^{2}-16x+1=2x^{2}-2+6x^{2}-12x
Use the distributive property to multiply 6x by x-2.
4x^{2}-16x+1=8x^{2}-2-12x
Combine 2x^{2} and 6x^{2} to get 8x^{2}.
4x^{2}-16x+1-8x^{2}=-2-12x
Subtract 8x^{2} from both sides.
-4x^{2}-16x+1=-2-12x
Combine 4x^{2} and -8x^{2} to get -4x^{2}.
-4x^{2}-16x+1+12x=-2
Add 12x to both sides.
-4x^{2}-4x+1=-2
Combine -16x and 12x to get -4x.
-4x^{2}-4x=-2-1
Subtract 1 from both sides.
-4x^{2}-4x=-3
Subtract 1 from -2 to get -3.
\frac{-4x^{2}-4x}{-4}=-\frac{3}{-4}
Divide both sides by -4.
x^{2}+\left(-\frac{4}{-4}\right)x=-\frac{3}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}+x=-\frac{3}{-4}
Divide -4 by -4.
x^{2}+x=\frac{3}{4}
Divide -3 by -4.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{3}{4}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=\frac{3+1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=1
Add \frac{3}{4} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{2}\right)^{2}=1
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x+\frac{1}{2}=1 x+\frac{1}{2}=-1
Simplify.
x=\frac{1}{2} x=-\frac{3}{2}
Subtract \frac{1}{2} from both sides of the equation.