Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-4x+1-\left(x-2\right)^{2}=12
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
4x^{2}-4x+1-\left(x^{2}-4x+4\right)=12
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
4x^{2}-4x+1-x^{2}+4x-4=12
To find the opposite of x^{2}-4x+4, find the opposite of each term.
3x^{2}-4x+1+4x-4=12
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+1-4=12
Combine -4x and 4x to get 0.
3x^{2}-3=12
Subtract 4 from 1 to get -3.
3x^{2}=12+3
Add 3 to both sides.
3x^{2}=15
Add 12 and 3 to get 15.
x^{2}=\frac{15}{3}
Divide both sides by 3.
x^{2}=5
Divide 15 by 3 to get 5.
x=\sqrt{5} x=-\sqrt{5}
Take the square root of both sides of the equation.
4x^{2}-4x+1-\left(x-2\right)^{2}=12
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
4x^{2}-4x+1-\left(x^{2}-4x+4\right)=12
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
4x^{2}-4x+1-x^{2}+4x-4=12
To find the opposite of x^{2}-4x+4, find the opposite of each term.
3x^{2}-4x+1+4x-4=12
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+1-4=12
Combine -4x and 4x to get 0.
3x^{2}-3=12
Subtract 4 from 1 to get -3.
3x^{2}-3-12=0
Subtract 12 from both sides.
3x^{2}-15=0
Subtract 12 from -3 to get -15.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-15\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 0 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-15\right)}}{2\times 3}
Square 0.
x=\frac{0±\sqrt{-12\left(-15\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{0±\sqrt{180}}{2\times 3}
Multiply -12 times -15.
x=\frac{0±6\sqrt{5}}{2\times 3}
Take the square root of 180.
x=\frac{0±6\sqrt{5}}{6}
Multiply 2 times 3.
x=\sqrt{5}
Now solve the equation x=\frac{0±6\sqrt{5}}{6} when ± is plus.
x=-\sqrt{5}
Now solve the equation x=\frac{0±6\sqrt{5}}{6} when ± is minus.
x=\sqrt{5} x=-\sqrt{5}
The equation is now solved.