Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-4x+1+\left(2x-2\right)^{2}-\left(2x-3\right)^{2}+\left(2x-4\right)^{2}=\left(2x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
4x^{2}-4x+1+4x^{2}-8x+4-\left(2x-3\right)^{2}+\left(2x-4\right)^{2}=\left(2x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-2\right)^{2}.
8x^{2}-4x+1-8x+4-\left(2x-3\right)^{2}+\left(2x-4\right)^{2}=\left(2x\right)^{2}
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
8x^{2}-12x+1+4-\left(2x-3\right)^{2}+\left(2x-4\right)^{2}=\left(2x\right)^{2}
Combine -4x and -8x to get -12x.
8x^{2}-12x+5-\left(2x-3\right)^{2}+\left(2x-4\right)^{2}=\left(2x\right)^{2}
Add 1 and 4 to get 5.
8x^{2}-12x+5-\left(4x^{2}-12x+9\right)+\left(2x-4\right)^{2}=\left(2x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
8x^{2}-12x+5-4x^{2}+12x-9+\left(2x-4\right)^{2}=\left(2x\right)^{2}
To find the opposite of 4x^{2}-12x+9, find the opposite of each term.
4x^{2}-12x+5+12x-9+\left(2x-4\right)^{2}=\left(2x\right)^{2}
Combine 8x^{2} and -4x^{2} to get 4x^{2}.
4x^{2}+5-9+\left(2x-4\right)^{2}=\left(2x\right)^{2}
Combine -12x and 12x to get 0.
4x^{2}-4+\left(2x-4\right)^{2}=\left(2x\right)^{2}
Subtract 9 from 5 to get -4.
4x^{2}-4+4x^{2}-16x+16=\left(2x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-4\right)^{2}.
8x^{2}-4-16x+16=\left(2x\right)^{2}
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
8x^{2}+12-16x=\left(2x\right)^{2}
Add -4 and 16 to get 12.
8x^{2}+12-16x=2^{2}x^{2}
Expand \left(2x\right)^{2}.
8x^{2}+12-16x=4x^{2}
Calculate 2 to the power of 2 and get 4.
8x^{2}+12-16x-4x^{2}=0
Subtract 4x^{2} from both sides.
4x^{2}+12-16x=0
Combine 8x^{2} and -4x^{2} to get 4x^{2}.
x^{2}+3-4x=0
Divide both sides by 4.
x^{2}-4x+3=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-4 ab=1\times 3=3
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+3. To find a and b, set up a system to be solved.
a=-3 b=-1
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(x^{2}-3x\right)+\left(-x+3\right)
Rewrite x^{2}-4x+3 as \left(x^{2}-3x\right)+\left(-x+3\right).
x\left(x-3\right)-\left(x-3\right)
Factor out x in the first and -1 in the second group.
\left(x-3\right)\left(x-1\right)
Factor out common term x-3 by using distributive property.
x=3 x=1
To find equation solutions, solve x-3=0 and x-1=0.
4x^{2}-4x+1+\left(2x-2\right)^{2}-\left(2x-3\right)^{2}+\left(2x-4\right)^{2}=\left(2x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
4x^{2}-4x+1+4x^{2}-8x+4-\left(2x-3\right)^{2}+\left(2x-4\right)^{2}=\left(2x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-2\right)^{2}.
8x^{2}-4x+1-8x+4-\left(2x-3\right)^{2}+\left(2x-4\right)^{2}=\left(2x\right)^{2}
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
8x^{2}-12x+1+4-\left(2x-3\right)^{2}+\left(2x-4\right)^{2}=\left(2x\right)^{2}
Combine -4x and -8x to get -12x.
8x^{2}-12x+5-\left(2x-3\right)^{2}+\left(2x-4\right)^{2}=\left(2x\right)^{2}
Add 1 and 4 to get 5.
8x^{2}-12x+5-\left(4x^{2}-12x+9\right)+\left(2x-4\right)^{2}=\left(2x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
8x^{2}-12x+5-4x^{2}+12x-9+\left(2x-4\right)^{2}=\left(2x\right)^{2}
To find the opposite of 4x^{2}-12x+9, find the opposite of each term.
4x^{2}-12x+5+12x-9+\left(2x-4\right)^{2}=\left(2x\right)^{2}
Combine 8x^{2} and -4x^{2} to get 4x^{2}.
4x^{2}+5-9+\left(2x-4\right)^{2}=\left(2x\right)^{2}
Combine -12x and 12x to get 0.
4x^{2}-4+\left(2x-4\right)^{2}=\left(2x\right)^{2}
Subtract 9 from 5 to get -4.
4x^{2}-4+4x^{2}-16x+16=\left(2x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-4\right)^{2}.
8x^{2}-4-16x+16=\left(2x\right)^{2}
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
8x^{2}+12-16x=\left(2x\right)^{2}
Add -4 and 16 to get 12.
8x^{2}+12-16x=2^{2}x^{2}
Expand \left(2x\right)^{2}.
8x^{2}+12-16x=4x^{2}
Calculate 2 to the power of 2 and get 4.
8x^{2}+12-16x-4x^{2}=0
Subtract 4x^{2} from both sides.
4x^{2}+12-16x=0
Combine 8x^{2} and -4x^{2} to get 4x^{2}.
4x^{2}-16x+12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 4\times 12}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -16 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 4\times 12}}{2\times 4}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256-16\times 12}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-16\right)±\sqrt{256-192}}{2\times 4}
Multiply -16 times 12.
x=\frac{-\left(-16\right)±\sqrt{64}}{2\times 4}
Add 256 to -192.
x=\frac{-\left(-16\right)±8}{2\times 4}
Take the square root of 64.
x=\frac{16±8}{2\times 4}
The opposite of -16 is 16.
x=\frac{16±8}{8}
Multiply 2 times 4.
x=\frac{24}{8}
Now solve the equation x=\frac{16±8}{8} when ± is plus. Add 16 to 8.
x=3
Divide 24 by 8.
x=\frac{8}{8}
Now solve the equation x=\frac{16±8}{8} when ± is minus. Subtract 8 from 16.
x=1
Divide 8 by 8.
x=3 x=1
The equation is now solved.
4x^{2}-4x+1+\left(2x-2\right)^{2}-\left(2x-3\right)^{2}+\left(2x-4\right)^{2}=\left(2x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
4x^{2}-4x+1+4x^{2}-8x+4-\left(2x-3\right)^{2}+\left(2x-4\right)^{2}=\left(2x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-2\right)^{2}.
8x^{2}-4x+1-8x+4-\left(2x-3\right)^{2}+\left(2x-4\right)^{2}=\left(2x\right)^{2}
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
8x^{2}-12x+1+4-\left(2x-3\right)^{2}+\left(2x-4\right)^{2}=\left(2x\right)^{2}
Combine -4x and -8x to get -12x.
8x^{2}-12x+5-\left(2x-3\right)^{2}+\left(2x-4\right)^{2}=\left(2x\right)^{2}
Add 1 and 4 to get 5.
8x^{2}-12x+5-\left(4x^{2}-12x+9\right)+\left(2x-4\right)^{2}=\left(2x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
8x^{2}-12x+5-4x^{2}+12x-9+\left(2x-4\right)^{2}=\left(2x\right)^{2}
To find the opposite of 4x^{2}-12x+9, find the opposite of each term.
4x^{2}-12x+5+12x-9+\left(2x-4\right)^{2}=\left(2x\right)^{2}
Combine 8x^{2} and -4x^{2} to get 4x^{2}.
4x^{2}+5-9+\left(2x-4\right)^{2}=\left(2x\right)^{2}
Combine -12x and 12x to get 0.
4x^{2}-4+\left(2x-4\right)^{2}=\left(2x\right)^{2}
Subtract 9 from 5 to get -4.
4x^{2}-4+4x^{2}-16x+16=\left(2x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-4\right)^{2}.
8x^{2}-4-16x+16=\left(2x\right)^{2}
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
8x^{2}+12-16x=\left(2x\right)^{2}
Add -4 and 16 to get 12.
8x^{2}+12-16x=2^{2}x^{2}
Expand \left(2x\right)^{2}.
8x^{2}+12-16x=4x^{2}
Calculate 2 to the power of 2 and get 4.
8x^{2}+12-16x-4x^{2}=0
Subtract 4x^{2} from both sides.
4x^{2}+12-16x=0
Combine 8x^{2} and -4x^{2} to get 4x^{2}.
4x^{2}-16x=-12
Subtract 12 from both sides. Anything subtracted from zero gives its negation.
\frac{4x^{2}-16x}{4}=-\frac{12}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{16}{4}\right)x=-\frac{12}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-4x=-\frac{12}{4}
Divide -16 by 4.
x^{2}-4x=-3
Divide -12 by 4.
x^{2}-4x+\left(-2\right)^{2}=-3+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-3+4
Square -2.
x^{2}-4x+4=1
Add -3 to 4.
\left(x-2\right)^{2}=1
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x-2=1 x-2=-1
Simplify.
x=3 x=1
Add 2 to both sides of the equation.