Solve for x
x=-\frac{1}{4}=-0.25
x=1
Graph
Share
Copied to clipboard
4x^{2}-4x+1+\left(2x+1\right)^{2}=6x+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
4x^{2}-4x+1+4x^{2}+4x+1=6x+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
8x^{2}-4x+1+4x+1=6x+4
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
8x^{2}+1+1=6x+4
Combine -4x and 4x to get 0.
8x^{2}+2=6x+4
Add 1 and 1 to get 2.
8x^{2}+2-6x=4
Subtract 6x from both sides.
8x^{2}+2-6x-4=0
Subtract 4 from both sides.
8x^{2}-2-6x=0
Subtract 4 from 2 to get -2.
4x^{2}-1-3x=0
Divide both sides by 2.
4x^{2}-3x-1=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-3 ab=4\left(-1\right)=-4
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4x^{2}+ax+bx-1. To find a and b, set up a system to be solved.
1,-4 2,-2
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -4.
1-4=-3 2-2=0
Calculate the sum for each pair.
a=-4 b=1
The solution is the pair that gives sum -3.
\left(4x^{2}-4x\right)+\left(x-1\right)
Rewrite 4x^{2}-3x-1 as \left(4x^{2}-4x\right)+\left(x-1\right).
4x\left(x-1\right)+x-1
Factor out 4x in 4x^{2}-4x.
\left(x-1\right)\left(4x+1\right)
Factor out common term x-1 by using distributive property.
x=1 x=-\frac{1}{4}
To find equation solutions, solve x-1=0 and 4x+1=0.
4x^{2}-4x+1+\left(2x+1\right)^{2}=6x+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
4x^{2}-4x+1+4x^{2}+4x+1=6x+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
8x^{2}-4x+1+4x+1=6x+4
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
8x^{2}+1+1=6x+4
Combine -4x and 4x to get 0.
8x^{2}+2=6x+4
Add 1 and 1 to get 2.
8x^{2}+2-6x=4
Subtract 6x from both sides.
8x^{2}+2-6x-4=0
Subtract 4 from both sides.
8x^{2}-2-6x=0
Subtract 4 from 2 to get -2.
8x^{2}-6x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 8\left(-2\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -6 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 8\left(-2\right)}}{2\times 8}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-32\left(-2\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-6\right)±\sqrt{36+64}}{2\times 8}
Multiply -32 times -2.
x=\frac{-\left(-6\right)±\sqrt{100}}{2\times 8}
Add 36 to 64.
x=\frac{-\left(-6\right)±10}{2\times 8}
Take the square root of 100.
x=\frac{6±10}{2\times 8}
The opposite of -6 is 6.
x=\frac{6±10}{16}
Multiply 2 times 8.
x=\frac{16}{16}
Now solve the equation x=\frac{6±10}{16} when ± is plus. Add 6 to 10.
x=1
Divide 16 by 16.
x=-\frac{4}{16}
Now solve the equation x=\frac{6±10}{16} when ± is minus. Subtract 10 from 6.
x=-\frac{1}{4}
Reduce the fraction \frac{-4}{16} to lowest terms by extracting and canceling out 4.
x=1 x=-\frac{1}{4}
The equation is now solved.
4x^{2}-4x+1+\left(2x+1\right)^{2}=6x+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
4x^{2}-4x+1+4x^{2}+4x+1=6x+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
8x^{2}-4x+1+4x+1=6x+4
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
8x^{2}+1+1=6x+4
Combine -4x and 4x to get 0.
8x^{2}+2=6x+4
Add 1 and 1 to get 2.
8x^{2}+2-6x=4
Subtract 6x from both sides.
8x^{2}-6x=4-2
Subtract 2 from both sides.
8x^{2}-6x=2
Subtract 2 from 4 to get 2.
\frac{8x^{2}-6x}{8}=\frac{2}{8}
Divide both sides by 8.
x^{2}+\left(-\frac{6}{8}\right)x=\frac{2}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}-\frac{3}{4}x=\frac{2}{8}
Reduce the fraction \frac{-6}{8} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{3}{4}x=\frac{1}{4}
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{3}{4}x+\left(-\frac{3}{8}\right)^{2}=\frac{1}{4}+\left(-\frac{3}{8}\right)^{2}
Divide -\frac{3}{4}, the coefficient of the x term, by 2 to get -\frac{3}{8}. Then add the square of -\frac{3}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{4}x+\frac{9}{64}=\frac{1}{4}+\frac{9}{64}
Square -\frac{3}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{4}x+\frac{9}{64}=\frac{25}{64}
Add \frac{1}{4} to \frac{9}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{8}\right)^{2}=\frac{25}{64}
Factor x^{2}-\frac{3}{4}x+\frac{9}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{8}\right)^{2}}=\sqrt{\frac{25}{64}}
Take the square root of both sides of the equation.
x-\frac{3}{8}=\frac{5}{8} x-\frac{3}{8}=-\frac{5}{8}
Simplify.
x=1 x=-\frac{1}{4}
Add \frac{3}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}