Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

2x\times \frac{3}{5}y+2x\left(-\frac{1}{3}\right)z+4x^{2}-\frac{3}{5}y\times \frac{3}{5}y-\frac{3}{5}y\left(-\frac{1}{3}\right)z-\frac{3}{5}y\times 2x-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z\left(-\frac{1}{3}\right)z-\frac{1}{3}z\times 2x
Apply the distributive property by multiplying each term of 2x-\frac{3}{5}y-\frac{1}{3}z by each term of \frac{3}{5}y-\frac{1}{3}z+2x.
2x\times \frac{3}{5}y+2x\left(-\frac{1}{3}\right)z+4x^{2}-\frac{3}{5}y^{2}\times \frac{3}{5}-\frac{3}{5}y\left(-\frac{1}{3}\right)z-\frac{3}{5}y\times 2x-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z\left(-\frac{1}{3}\right)z-\frac{1}{3}z\times 2x
Multiply y and y to get y^{2}.
2x\times \frac{3}{5}y+2x\left(-\frac{1}{3}\right)z+4x^{2}-\frac{3}{5}y^{2}\times \frac{3}{5}-\frac{3}{5}y\left(-\frac{1}{3}\right)z-\frac{3}{5}y\times 2x-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Multiply z and z to get z^{2}.
\frac{2\times 3}{5}xy+2x\left(-\frac{1}{3}\right)z+4x^{2}-\frac{3}{5}y^{2}\times \frac{3}{5}-\frac{3}{5}y\left(-\frac{1}{3}\right)z-\frac{3}{5}y\times 2x-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Express 2\times \frac{3}{5} as a single fraction.
\frac{6}{5}xy+2x\left(-\frac{1}{3}\right)z+4x^{2}-\frac{3}{5}y^{2}\times \frac{3}{5}-\frac{3}{5}y\left(-\frac{1}{3}\right)z-\frac{3}{5}y\times 2x-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Multiply 2 and 3 to get 6.
\frac{6}{5}xy+\frac{2\left(-1\right)}{3}xz+4x^{2}-\frac{3}{5}y^{2}\times \frac{3}{5}-\frac{3}{5}y\left(-\frac{1}{3}\right)z-\frac{3}{5}y\times 2x-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Express 2\left(-\frac{1}{3}\right) as a single fraction.
\frac{6}{5}xy+\frac{-2}{3}xz+4x^{2}-\frac{3}{5}y^{2}\times \frac{3}{5}-\frac{3}{5}y\left(-\frac{1}{3}\right)z-\frac{3}{5}y\times 2x-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Multiply 2 and -1 to get -2.
\frac{6}{5}xy-\frac{2}{3}xz+4x^{2}-\frac{3}{5}y^{2}\times \frac{3}{5}-\frac{3}{5}y\left(-\frac{1}{3}\right)z-\frac{3}{5}y\times 2x-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
\frac{6}{5}xy-\frac{2}{3}xz+4x^{2}+\frac{-3\times 3}{5\times 5}y^{2}-\frac{3}{5}y\left(-\frac{1}{3}\right)z-\frac{3}{5}y\times 2x-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Multiply -\frac{3}{5} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{6}{5}xy-\frac{2}{3}xz+4x^{2}+\frac{-9}{25}y^{2}-\frac{3}{5}y\left(-\frac{1}{3}\right)z-\frac{3}{5}y\times 2x-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Do the multiplications in the fraction \frac{-3\times 3}{5\times 5}.
\frac{6}{5}xy-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}-\frac{3}{5}y\left(-\frac{1}{3}\right)z-\frac{3}{5}y\times 2x-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Fraction \frac{-9}{25} can be rewritten as -\frac{9}{25} by extracting the negative sign.
\frac{6}{5}xy-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{-3\left(-1\right)}{5\times 3}yz-\frac{3}{5}y\times 2x-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Multiply -\frac{3}{5} times -\frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{6}{5}xy-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{3}{15}yz-\frac{3}{5}y\times 2x-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Do the multiplications in the fraction \frac{-3\left(-1\right)}{5\times 3}.
\frac{6}{5}xy-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{1}{5}yz-\frac{3}{5}y\times 2x-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Reduce the fraction \frac{3}{15} to lowest terms by extracting and canceling out 3.
\frac{6}{5}xy-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{1}{5}yz+\frac{-3\times 2}{5}yx-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Express -\frac{3}{5}\times 2 as a single fraction.
\frac{6}{5}xy-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{1}{5}yz+\frac{-6}{5}yx-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Multiply -3 and 2 to get -6.
\frac{6}{5}xy-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{1}{5}yz-\frac{6}{5}yx-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Fraction \frac{-6}{5} can be rewritten as -\frac{6}{5} by extracting the negative sign.
-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{1}{5}yz-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Combine \frac{6}{5}xy and -\frac{6}{5}yx to get 0.
-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{1}{5}yz+\frac{-3}{3\times 5}zy-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Multiply -\frac{1}{3} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{1}{5}yz+\frac{-1}{5}zy-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Cancel out 3 in both numerator and denominator.
-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{1}{5}yz-\frac{1}{5}zy-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Fraction \frac{-1}{5} can be rewritten as -\frac{1}{5} by extracting the negative sign.
-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Combine \frac{1}{5}yz and -\frac{1}{5}zy to get 0.
-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{-\left(-1\right)}{3\times 3}z^{2}-\frac{1}{3}z\times 2x
Multiply -\frac{1}{3} times -\frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{1}{9}z^{2}-\frac{1}{3}z\times 2x
Do the multiplications in the fraction \frac{-\left(-1\right)}{3\times 3}.
-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{1}{9}z^{2}+\frac{-2}{3}zx
Express -\frac{1}{3}\times 2 as a single fraction.
-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{1}{9}z^{2}-\frac{2}{3}zx
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
-\frac{4}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{1}{9}z^{2}
Combine -\frac{2}{3}xz and -\frac{2}{3}zx to get -\frac{4}{3}xz.
2x\times \frac{3}{5}y+2x\left(-\frac{1}{3}\right)z+4x^{2}-\frac{3}{5}y\times \frac{3}{5}y-\frac{3}{5}y\left(-\frac{1}{3}\right)z-\frac{3}{5}y\times 2x-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z\left(-\frac{1}{3}\right)z-\frac{1}{3}z\times 2x
Apply the distributive property by multiplying each term of 2x-\frac{3}{5}y-\frac{1}{3}z by each term of \frac{3}{5}y-\frac{1}{3}z+2x.
2x\times \frac{3}{5}y+2x\left(-\frac{1}{3}\right)z+4x^{2}-\frac{3}{5}y^{2}\times \frac{3}{5}-\frac{3}{5}y\left(-\frac{1}{3}\right)z-\frac{3}{5}y\times 2x-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z\left(-\frac{1}{3}\right)z-\frac{1}{3}z\times 2x
Multiply y and y to get y^{2}.
2x\times \frac{3}{5}y+2x\left(-\frac{1}{3}\right)z+4x^{2}-\frac{3}{5}y^{2}\times \frac{3}{5}-\frac{3}{5}y\left(-\frac{1}{3}\right)z-\frac{3}{5}y\times 2x-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Multiply z and z to get z^{2}.
\frac{2\times 3}{5}xy+2x\left(-\frac{1}{3}\right)z+4x^{2}-\frac{3}{5}y^{2}\times \frac{3}{5}-\frac{3}{5}y\left(-\frac{1}{3}\right)z-\frac{3}{5}y\times 2x-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Express 2\times \frac{3}{5} as a single fraction.
\frac{6}{5}xy+2x\left(-\frac{1}{3}\right)z+4x^{2}-\frac{3}{5}y^{2}\times \frac{3}{5}-\frac{3}{5}y\left(-\frac{1}{3}\right)z-\frac{3}{5}y\times 2x-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Multiply 2 and 3 to get 6.
\frac{6}{5}xy+\frac{2\left(-1\right)}{3}xz+4x^{2}-\frac{3}{5}y^{2}\times \frac{3}{5}-\frac{3}{5}y\left(-\frac{1}{3}\right)z-\frac{3}{5}y\times 2x-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Express 2\left(-\frac{1}{3}\right) as a single fraction.
\frac{6}{5}xy+\frac{-2}{3}xz+4x^{2}-\frac{3}{5}y^{2}\times \frac{3}{5}-\frac{3}{5}y\left(-\frac{1}{3}\right)z-\frac{3}{5}y\times 2x-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Multiply 2 and -1 to get -2.
\frac{6}{5}xy-\frac{2}{3}xz+4x^{2}-\frac{3}{5}y^{2}\times \frac{3}{5}-\frac{3}{5}y\left(-\frac{1}{3}\right)z-\frac{3}{5}y\times 2x-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
\frac{6}{5}xy-\frac{2}{3}xz+4x^{2}+\frac{-3\times 3}{5\times 5}y^{2}-\frac{3}{5}y\left(-\frac{1}{3}\right)z-\frac{3}{5}y\times 2x-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Multiply -\frac{3}{5} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{6}{5}xy-\frac{2}{3}xz+4x^{2}+\frac{-9}{25}y^{2}-\frac{3}{5}y\left(-\frac{1}{3}\right)z-\frac{3}{5}y\times 2x-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Do the multiplications in the fraction \frac{-3\times 3}{5\times 5}.
\frac{6}{5}xy-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}-\frac{3}{5}y\left(-\frac{1}{3}\right)z-\frac{3}{5}y\times 2x-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Fraction \frac{-9}{25} can be rewritten as -\frac{9}{25} by extracting the negative sign.
\frac{6}{5}xy-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{-3\left(-1\right)}{5\times 3}yz-\frac{3}{5}y\times 2x-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Multiply -\frac{3}{5} times -\frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{6}{5}xy-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{3}{15}yz-\frac{3}{5}y\times 2x-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Do the multiplications in the fraction \frac{-3\left(-1\right)}{5\times 3}.
\frac{6}{5}xy-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{1}{5}yz-\frac{3}{5}y\times 2x-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Reduce the fraction \frac{3}{15} to lowest terms by extracting and canceling out 3.
\frac{6}{5}xy-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{1}{5}yz+\frac{-3\times 2}{5}yx-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Express -\frac{3}{5}\times 2 as a single fraction.
\frac{6}{5}xy-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{1}{5}yz+\frac{-6}{5}yx-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Multiply -3 and 2 to get -6.
\frac{6}{5}xy-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{1}{5}yz-\frac{6}{5}yx-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Fraction \frac{-6}{5} can be rewritten as -\frac{6}{5} by extracting the negative sign.
-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{1}{5}yz-\frac{1}{3}z\times \frac{3}{5}y-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Combine \frac{6}{5}xy and -\frac{6}{5}yx to get 0.
-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{1}{5}yz+\frac{-3}{3\times 5}zy-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Multiply -\frac{1}{3} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{1}{5}yz+\frac{-1}{5}zy-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Cancel out 3 in both numerator and denominator.
-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{1}{5}yz-\frac{1}{5}zy-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Fraction \frac{-1}{5} can be rewritten as -\frac{1}{5} by extracting the negative sign.
-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}-\frac{1}{3}z^{2}\left(-\frac{1}{3}\right)-\frac{1}{3}z\times 2x
Combine \frac{1}{5}yz and -\frac{1}{5}zy to get 0.
-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{-\left(-1\right)}{3\times 3}z^{2}-\frac{1}{3}z\times 2x
Multiply -\frac{1}{3} times -\frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{1}{9}z^{2}-\frac{1}{3}z\times 2x
Do the multiplications in the fraction \frac{-\left(-1\right)}{3\times 3}.
-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{1}{9}z^{2}+\frac{-2}{3}zx
Express -\frac{1}{3}\times 2 as a single fraction.
-\frac{2}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{1}{9}z^{2}-\frac{2}{3}zx
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
-\frac{4}{3}xz+4x^{2}-\frac{9}{25}y^{2}+\frac{1}{9}z^{2}
Combine -\frac{2}{3}xz and -\frac{2}{3}zx to get -\frac{4}{3}xz.