Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-\frac{11}{5}x+\frac{1}{5}+\frac{2}{5}=0
Use the distributive property to multiply 2x-\frac{1}{5} by x-1 and combine like terms.
2x^{2}-\frac{11}{5}x+\frac{3}{5}=0
Add \frac{1}{5} and \frac{2}{5} to get \frac{3}{5}.
x=\frac{-\left(-\frac{11}{5}\right)±\sqrt{\left(-\frac{11}{5}\right)^{2}-4\times 2\times \frac{3}{5}}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -\frac{11}{5} for b, and \frac{3}{5} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{11}{5}\right)±\sqrt{\frac{121}{25}-4\times 2\times \frac{3}{5}}}{2\times 2}
Square -\frac{11}{5} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{11}{5}\right)±\sqrt{\frac{121}{25}-8\times \frac{3}{5}}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-\frac{11}{5}\right)±\sqrt{\frac{121}{25}-\frac{24}{5}}}{2\times 2}
Multiply -8 times \frac{3}{5}.
x=\frac{-\left(-\frac{11}{5}\right)±\sqrt{\frac{1}{25}}}{2\times 2}
Add \frac{121}{25} to -\frac{24}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{11}{5}\right)±\frac{1}{5}}{2\times 2}
Take the square root of \frac{1}{25}.
x=\frac{\frac{11}{5}±\frac{1}{5}}{2\times 2}
The opposite of -\frac{11}{5} is \frac{11}{5}.
x=\frac{\frac{11}{5}±\frac{1}{5}}{4}
Multiply 2 times 2.
x=\frac{\frac{12}{5}}{4}
Now solve the equation x=\frac{\frac{11}{5}±\frac{1}{5}}{4} when ± is plus. Add \frac{11}{5} to \frac{1}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{3}{5}
Divide \frac{12}{5} by 4.
x=\frac{2}{4}
Now solve the equation x=\frac{\frac{11}{5}±\frac{1}{5}}{4} when ± is minus. Subtract \frac{1}{5} from \frac{11}{5} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
x=\frac{3}{5} x=\frac{1}{2}
The equation is now solved.
2x^{2}-\frac{11}{5}x+\frac{1}{5}+\frac{2}{5}=0
Use the distributive property to multiply 2x-\frac{1}{5} by x-1 and combine like terms.
2x^{2}-\frac{11}{5}x+\frac{3}{5}=0
Add \frac{1}{5} and \frac{2}{5} to get \frac{3}{5}.
2x^{2}-\frac{11}{5}x=-\frac{3}{5}
Subtract \frac{3}{5} from both sides. Anything subtracted from zero gives its negation.
\frac{2x^{2}-\frac{11}{5}x}{2}=-\frac{\frac{3}{5}}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{\frac{11}{5}}{2}\right)x=-\frac{\frac{3}{5}}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{11}{10}x=-\frac{\frac{3}{5}}{2}
Divide -\frac{11}{5} by 2.
x^{2}-\frac{11}{10}x=-\frac{3}{10}
Divide -\frac{3}{5} by 2.
x^{2}-\frac{11}{10}x+\left(-\frac{11}{20}\right)^{2}=-\frac{3}{10}+\left(-\frac{11}{20}\right)^{2}
Divide -\frac{11}{10}, the coefficient of the x term, by 2 to get -\frac{11}{20}. Then add the square of -\frac{11}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{10}x+\frac{121}{400}=-\frac{3}{10}+\frac{121}{400}
Square -\frac{11}{20} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{10}x+\frac{121}{400}=\frac{1}{400}
Add -\frac{3}{10} to \frac{121}{400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{11}{20}\right)^{2}=\frac{1}{400}
Factor x^{2}-\frac{11}{10}x+\frac{121}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{20}\right)^{2}}=\sqrt{\frac{1}{400}}
Take the square root of both sides of the equation.
x-\frac{11}{20}=\frac{1}{20} x-\frac{11}{20}=-\frac{1}{20}
Simplify.
x=\frac{3}{5} x=\frac{1}{2}
Add \frac{11}{20} to both sides of the equation.