Evaluate
6x+\frac{1}{2}-\frac{1}{2x}
Expand
6x+\frac{1}{2}-\frac{1}{2x}
Graph
Share
Copied to clipboard
\left(2x-\frac{1}{2}\right)\left(\frac{3x}{x}+\frac{1}{x}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{x}{x}.
\left(2x-\frac{1}{2}\right)\times \frac{3x+1}{x}
Since \frac{3x}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
2x\times \frac{3x+1}{x}-\frac{1}{2}\times \frac{3x+1}{x}
Use the distributive property to multiply 2x-\frac{1}{2} by \frac{3x+1}{x}.
\frac{2\left(3x+1\right)}{x}x-\frac{1}{2}\times \frac{3x+1}{x}
Express 2\times \frac{3x+1}{x} as a single fraction.
\frac{2\left(3x+1\right)}{x}x+\frac{-\left(3x+1\right)}{2x}
Multiply -\frac{1}{2} times \frac{3x+1}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{6x+2}{x}x+\frac{-\left(3x+1\right)}{2x}
Use the distributive property to multiply 2 by 3x+1.
6x+2+\frac{-\left(3x+1\right)}{2x}
Cancel out x and x.
6x+2+\frac{3x+1}{-2x}
Cancel out -1 in both numerator and denominator.
\frac{\left(6x+2\right)\left(-2\right)x}{-2x}+\frac{3x+1}{-2x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6x+2 times \frac{-2x}{-2x}.
\frac{\left(6x+2\right)\left(-2\right)x+3x+1}{-2x}
Since \frac{\left(6x+2\right)\left(-2\right)x}{-2x} and \frac{3x+1}{-2x} have the same denominator, add them by adding their numerators.
\frac{-12x^{2}-4x+3x+1}{-2x}
Do the multiplications in \left(6x+2\right)\left(-2\right)x+3x+1.
\frac{-12x^{2}-x+1}{-2x}
Combine like terms in -12x^{2}-4x+3x+1.
\left(2x-\frac{1}{2}\right)\left(\frac{3x}{x}+\frac{1}{x}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{x}{x}.
\left(2x-\frac{1}{2}\right)\times \frac{3x+1}{x}
Since \frac{3x}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
2x\times \frac{3x+1}{x}-\frac{1}{2}\times \frac{3x+1}{x}
Use the distributive property to multiply 2x-\frac{1}{2} by \frac{3x+1}{x}.
\frac{2\left(3x+1\right)}{x}x-\frac{1}{2}\times \frac{3x+1}{x}
Express 2\times \frac{3x+1}{x} as a single fraction.
\frac{2\left(3x+1\right)}{x}x+\frac{-\left(3x+1\right)}{2x}
Multiply -\frac{1}{2} times \frac{3x+1}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{6x+2}{x}x+\frac{-\left(3x+1\right)}{2x}
Use the distributive property to multiply 2 by 3x+1.
6x+2+\frac{-\left(3x+1\right)}{2x}
Cancel out x and x.
6x+2+\frac{3x+1}{-2x}
Cancel out -1 in both numerator and denominator.
\frac{\left(6x+2\right)\left(-2\right)x}{-2x}+\frac{3x+1}{-2x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6x+2 times \frac{-2x}{-2x}.
\frac{\left(6x+2\right)\left(-2\right)x+3x+1}{-2x}
Since \frac{\left(6x+2\right)\left(-2\right)x}{-2x} and \frac{3x+1}{-2x} have the same denominator, add them by adding their numerators.
\frac{-12x^{2}-4x+3x+1}{-2x}
Do the multiplications in \left(6x+2\right)\left(-2\right)x+3x+1.
\frac{-12x^{2}-x+1}{-2x}
Combine like terms in -12x^{2}-4x+3x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}