Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2^{2}x^{2}=x^{2}+\left(5\sqrt{3}\right)^{2}
Expand \left(2x\right)^{2}.
4x^{2}=x^{2}+\left(5\sqrt{3}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4x^{2}=x^{2}+5^{2}\left(\sqrt{3}\right)^{2}
Expand \left(5\sqrt{3}\right)^{2}.
4x^{2}=x^{2}+25\left(\sqrt{3}\right)^{2}
Calculate 5 to the power of 2 and get 25.
4x^{2}=x^{2}+25\times 3
The square of \sqrt{3} is 3.
4x^{2}=x^{2}+75
Multiply 25 and 3 to get 75.
4x^{2}-x^{2}=75
Subtract x^{2} from both sides.
3x^{2}=75
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}-75=0
Subtract 75 from both sides.
x^{2}-25=0
Divide both sides by 3.
\left(x-5\right)\left(x+5\right)=0
Consider x^{2}-25. Rewrite x^{2}-25 as x^{2}-5^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=5 x=-5
To find equation solutions, solve x-5=0 and x+5=0.
2^{2}x^{2}=x^{2}+\left(5\sqrt{3}\right)^{2}
Expand \left(2x\right)^{2}.
4x^{2}=x^{2}+\left(5\sqrt{3}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4x^{2}=x^{2}+5^{2}\left(\sqrt{3}\right)^{2}
Expand \left(5\sqrt{3}\right)^{2}.
4x^{2}=x^{2}+25\left(\sqrt{3}\right)^{2}
Calculate 5 to the power of 2 and get 25.
4x^{2}=x^{2}+25\times 3
The square of \sqrt{3} is 3.
4x^{2}=x^{2}+75
Multiply 25 and 3 to get 75.
4x^{2}-x^{2}=75
Subtract x^{2} from both sides.
3x^{2}=75
Combine 4x^{2} and -x^{2} to get 3x^{2}.
x^{2}=\frac{75}{3}
Divide both sides by 3.
x^{2}=25
Divide 75 by 3 to get 25.
x=5 x=-5
Take the square root of both sides of the equation.
2^{2}x^{2}=x^{2}+\left(5\sqrt{3}\right)^{2}
Expand \left(2x\right)^{2}.
4x^{2}=x^{2}+\left(5\sqrt{3}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4x^{2}=x^{2}+5^{2}\left(\sqrt{3}\right)^{2}
Expand \left(5\sqrt{3}\right)^{2}.
4x^{2}=x^{2}+25\left(\sqrt{3}\right)^{2}
Calculate 5 to the power of 2 and get 25.
4x^{2}=x^{2}+25\times 3
The square of \sqrt{3} is 3.
4x^{2}=x^{2}+75
Multiply 25 and 3 to get 75.
4x^{2}-x^{2}=75
Subtract x^{2} from both sides.
3x^{2}=75
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}-75=0
Subtract 75 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-75\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 0 for b, and -75 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-75\right)}}{2\times 3}
Square 0.
x=\frac{0±\sqrt{-12\left(-75\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{0±\sqrt{900}}{2\times 3}
Multiply -12 times -75.
x=\frac{0±30}{2\times 3}
Take the square root of 900.
x=\frac{0±30}{6}
Multiply 2 times 3.
x=5
Now solve the equation x=\frac{0±30}{6} when ± is plus. Divide 30 by 6.
x=-5
Now solve the equation x=\frac{0±30}{6} when ± is minus. Divide -30 by 6.
x=5 x=-5
The equation is now solved.