Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2^{2}x^{2}+\left(2x+2\right)^{2}=52
Expand \left(2x\right)^{2}.
4x^{2}+\left(2x+2\right)^{2}=52
Calculate 2 to the power of 2 and get 4.
4x^{2}+4x^{2}+8x+4=52
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+2\right)^{2}.
8x^{2}+8x+4=52
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
8x^{2}+8x+4-52=0
Subtract 52 from both sides.
8x^{2}+8x-48=0
Subtract 52 from 4 to get -48.
x^{2}+x-6=0
Divide both sides by 8.
a+b=1 ab=1\left(-6\right)=-6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-6. To find a and b, set up a system to be solved.
-1,6 -2,3
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -6.
-1+6=5 -2+3=1
Calculate the sum for each pair.
a=-2 b=3
The solution is the pair that gives sum 1.
\left(x^{2}-2x\right)+\left(3x-6\right)
Rewrite x^{2}+x-6 as \left(x^{2}-2x\right)+\left(3x-6\right).
x\left(x-2\right)+3\left(x-2\right)
Factor out x in the first and 3 in the second group.
\left(x-2\right)\left(x+3\right)
Factor out common term x-2 by using distributive property.
x=2 x=-3
To find equation solutions, solve x-2=0 and x+3=0.
2^{2}x^{2}+\left(2x+2\right)^{2}=52
Expand \left(2x\right)^{2}.
4x^{2}+\left(2x+2\right)^{2}=52
Calculate 2 to the power of 2 and get 4.
4x^{2}+4x^{2}+8x+4=52
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+2\right)^{2}.
8x^{2}+8x+4=52
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
8x^{2}+8x+4-52=0
Subtract 52 from both sides.
8x^{2}+8x-48=0
Subtract 52 from 4 to get -48.
x=\frac{-8±\sqrt{8^{2}-4\times 8\left(-48\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 8 for b, and -48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 8\left(-48\right)}}{2\times 8}
Square 8.
x=\frac{-8±\sqrt{64-32\left(-48\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-8±\sqrt{64+1536}}{2\times 8}
Multiply -32 times -48.
x=\frac{-8±\sqrt{1600}}{2\times 8}
Add 64 to 1536.
x=\frac{-8±40}{2\times 8}
Take the square root of 1600.
x=\frac{-8±40}{16}
Multiply 2 times 8.
x=\frac{32}{16}
Now solve the equation x=\frac{-8±40}{16} when ± is plus. Add -8 to 40.
x=2
Divide 32 by 16.
x=-\frac{48}{16}
Now solve the equation x=\frac{-8±40}{16} when ± is minus. Subtract 40 from -8.
x=-3
Divide -48 by 16.
x=2 x=-3
The equation is now solved.
2^{2}x^{2}+\left(2x+2\right)^{2}=52
Expand \left(2x\right)^{2}.
4x^{2}+\left(2x+2\right)^{2}=52
Calculate 2 to the power of 2 and get 4.
4x^{2}+4x^{2}+8x+4=52
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+2\right)^{2}.
8x^{2}+8x+4=52
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
8x^{2}+8x=52-4
Subtract 4 from both sides.
8x^{2}+8x=48
Subtract 4 from 52 to get 48.
\frac{8x^{2}+8x}{8}=\frac{48}{8}
Divide both sides by 8.
x^{2}+\frac{8}{8}x=\frac{48}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}+x=\frac{48}{8}
Divide 8 by 8.
x^{2}+x=6
Divide 48 by 8.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=6+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=6+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{25}{4}
Add 6 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{25}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{5}{2} x+\frac{1}{2}=-\frac{5}{2}
Simplify.
x=2 x=-3
Subtract \frac{1}{2} from both sides of the equation.