Evaluate
-10y^{10}
Differentiate w.r.t. y
-100y^{9}
Share
Copied to clipboard
2^{1}x^{2}y^{3}\left(-5\right)^{1}x^{-2}y^{7}
Use the rules of exponents to simplify the expression.
2^{1}\left(-5\right)^{1}x^{2}x^{-2}y^{3}y^{7}
Use the Commutative Property of Multiplication.
2^{1}\left(-5\right)^{1}x^{2-2}y^{3+7}
To multiply powers of the same base, add their exponents.
2^{1}\left(-5\right)^{1}x^{0}y^{3+7}
Add the exponents 2 and -2.
2^{1}\left(-5\right)^{1}y^{3+7}
For any number a except 0, a^{0}=1.
2^{1}\left(-5\right)^{1}y^{10}
Add the exponents 3 and 7.
-10y^{10}
Multiply 2 times -5.
\frac{\mathrm{d}}{\mathrm{d}y}(2y^{3}\left(-5\right)y^{7})
Multiply x^{2} and x^{-2} to get 1.
\frac{\mathrm{d}}{\mathrm{d}y}(2y^{10}\left(-5\right))
To multiply powers of the same base, add their exponents. Add 3 and 7 to get 10.
\frac{\mathrm{d}}{\mathrm{d}y}(-10y^{10})
Multiply 2 and -5 to get -10.
10\left(-10\right)y^{10-1}
The derivative of ax^{n} is nax^{n-1}.
-100y^{10-1}
Multiply 10 times -10.
-100y^{9}
Subtract 1 from 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}