Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image

Similar Problems from Web Search

Share

2^{1}x^{2}y^{3}\left(-5\right)^{1}x^{-2}y^{7}
Use the rules of exponents to simplify the expression.
2^{1}\left(-5\right)^{1}x^{2}x^{-2}y^{3}y^{7}
Use the Commutative Property of Multiplication.
2^{1}\left(-5\right)^{1}x^{2-2}y^{3+7}
To multiply powers of the same base, add their exponents.
2^{1}\left(-5\right)^{1}x^{0}y^{3+7}
Add the exponents 2 and -2.
2^{1}\left(-5\right)^{1}y^{3+7}
For any number a except 0, a^{0}=1.
2^{1}\left(-5\right)^{1}y^{10}
Add the exponents 3 and 7.
-10y^{10}
Multiply 2 times -5.
\frac{\mathrm{d}}{\mathrm{d}y}(2y^{3}\left(-5\right)y^{7})
Multiply x^{2} and x^{-2} to get 1.
\frac{\mathrm{d}}{\mathrm{d}y}(2y^{10}\left(-5\right))
To multiply powers of the same base, add their exponents. Add 3 and 7 to get 10.
\frac{\mathrm{d}}{\mathrm{d}y}(-10y^{10})
Multiply 2 and -5 to get -10.
10\left(-10\right)y^{10-1}
The derivative of ax^{n} is nax^{n-1}.
-100y^{10-1}
Multiply 10 times -10.
-100y^{9}
Subtract 1 from 10.