Evaluate
\left(x-1\right)\left(5x+4\right)
Factor
\left(x-1\right)\left(5x+4\right)
Graph
Share
Copied to clipboard
5x^{2}-11x+10x-4
Combine 2x^{2} and 3x^{2} to get 5x^{2}.
5x^{2}-x-4
Combine -11x and 10x to get -x.
5x^{2}-x-4
Multiply and combine like terms.
a+b=-1 ab=5\left(-4\right)=-20
Factor the expression by grouping. First, the expression needs to be rewritten as 5x^{2}+ax+bx-4. To find a and b, set up a system to be solved.
1,-20 2,-10 4,-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -20.
1-20=-19 2-10=-8 4-5=-1
Calculate the sum for each pair.
a=-5 b=4
The solution is the pair that gives sum -1.
\left(5x^{2}-5x\right)+\left(4x-4\right)
Rewrite 5x^{2}-x-4 as \left(5x^{2}-5x\right)+\left(4x-4\right).
5x\left(x-1\right)+4\left(x-1\right)
Factor out 5x in the first and 4 in the second group.
\left(x-1\right)\left(5x+4\right)
Factor out common term x-1 by using distributive property.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}