Solve for x
x=-\frac{y^{4}}{8}-\frac{y}{2}+2
Graph
Share
Copied to clipboard
4x^{2}+4xy-32x+y^{2}-16y+64=\left(2x+y\right)^{2}+4y^{4}
Square 2x+y-8.
4x^{2}+4xy-32x+y^{2}-16y+64=4x^{2}+4xy+y^{2}+4y^{4}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+y\right)^{2}.
4x^{2}+4xy-32x+y^{2}-16y+64-4x^{2}=4xy+y^{2}+4y^{4}
Subtract 4x^{2} from both sides.
4xy-32x+y^{2}-16y+64=4xy+y^{2}+4y^{4}
Combine 4x^{2} and -4x^{2} to get 0.
4xy-32x+y^{2}-16y+64-4xy=y^{2}+4y^{4}
Subtract 4xy from both sides.
-32x+y^{2}-16y+64=y^{2}+4y^{4}
Combine 4xy and -4xy to get 0.
-32x-16y+64=y^{2}+4y^{4}-y^{2}
Subtract y^{2} from both sides.
-32x-16y+64=4y^{4}
Combine y^{2} and -y^{2} to get 0.
-32x+64=4y^{4}+16y
Add 16y to both sides.
-32x=4y^{4}+16y-64
Subtract 64 from both sides.
\frac{-32x}{-32}=\frac{4y^{4}+16y-64}{-32}
Divide both sides by -32.
x=\frac{4y^{4}+16y-64}{-32}
Dividing by -32 undoes the multiplication by -32.
x=-\frac{y^{4}}{8}-\frac{y}{2}+2
Divide 4y^{4}+16y-64 by -32.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}