Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(2x+y\right)\left(2x-y\right)-\frac{y\left(x^{2}+xy-y^{2}\right)}{y}
Factor the expressions that are not already factored in \frac{x^{2}y+xy^{2}-y^{3}}{y}.
\left(2x+y\right)\left(2x-y\right)-\left(x^{2}+xy-y^{2}\right)
Cancel out y in both numerator and denominator.
\left(2x+y\right)\left(2x-y\right)-x^{2}-xy+y^{2}
To find the opposite of x^{2}+xy-y^{2}, find the opposite of each term.
\left(2x\right)^{2}-y^{2}-x^{2}-xy+y^{2}
Consider \left(2x+y\right)\left(2x-y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}x^{2}-y^{2}-x^{2}-xy+y^{2}
Expand \left(2x\right)^{2}.
4x^{2}-y^{2}-x^{2}-xy+y^{2}
Calculate 2 to the power of 2 and get 4.
3x^{2}-y^{2}-xy+y^{2}
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}-xy
Combine -y^{2} and y^{2} to get 0.
\left(2x+y\right)\left(2x-y\right)-\frac{y\left(x^{2}+xy-y^{2}\right)}{y}
Factor the expressions that are not already factored in \frac{x^{2}y+xy^{2}-y^{3}}{y}.
\left(2x+y\right)\left(2x-y\right)-\left(x^{2}+xy-y^{2}\right)
Cancel out y in both numerator and denominator.
\left(2x+y\right)\left(2x-y\right)-x^{2}-xy+y^{2}
To find the opposite of x^{2}+xy-y^{2}, find the opposite of each term.
\left(2x\right)^{2}-y^{2}-x^{2}-xy+y^{2}
Consider \left(2x+y\right)\left(2x-y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}x^{2}-y^{2}-x^{2}-xy+y^{2}
Expand \left(2x\right)^{2}.
4x^{2}-y^{2}-x^{2}-xy+y^{2}
Calculate 2 to the power of 2 and get 4.
3x^{2}-y^{2}-xy+y^{2}
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}-xy
Combine -y^{2} and y^{2} to get 0.