Evaluate
y\left(2-3y\right)
Expand
2y-3y^{2}
Share
Copied to clipboard
\left(4x^{2}-y^{2}\right)\left(4x^{2}+y^{2}\right)-\left(4x^{2}+y-1\right)^{2}+\left(\left(y+1\right)\left(y-1\right)\right)^{2}+8x^{2}\left(y-1\right)
Use the distributive property to multiply 2x+y by 2x-y and combine like terms.
\left(4x^{2}\right)^{2}-\left(y^{2}\right)^{2}-\left(4x^{2}+y-1\right)^{2}+\left(\left(y+1\right)\left(y-1\right)\right)^{2}+8x^{2}\left(y-1\right)
Consider \left(4x^{2}-y^{2}\right)\left(4x^{2}+y^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(4x^{2}\right)^{2}-y^{4}-\left(4x^{2}+y-1\right)^{2}+\left(\left(y+1\right)\left(y-1\right)\right)^{2}+8x^{2}\left(y-1\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
4^{2}\left(x^{2}\right)^{2}-y^{4}-\left(4x^{2}+y-1\right)^{2}+\left(\left(y+1\right)\left(y-1\right)\right)^{2}+8x^{2}\left(y-1\right)
Expand \left(4x^{2}\right)^{2}.
4^{2}x^{4}-y^{4}-\left(4x^{2}+y-1\right)^{2}+\left(\left(y+1\right)\left(y-1\right)\right)^{2}+8x^{2}\left(y-1\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
16x^{4}-y^{4}-\left(4x^{2}+y-1\right)^{2}+\left(\left(y+1\right)\left(y-1\right)\right)^{2}+8x^{2}\left(y-1\right)
Calculate 4 to the power of 2 and get 16.
16x^{4}-y^{4}-\left(16x^{4}-8x^{2}+y^{2}+8yx^{2}-2y+1\right)+\left(\left(y+1\right)\left(y-1\right)\right)^{2}+8x^{2}\left(y-1\right)
Square 4x^{2}+y-1.
16x^{4}-y^{4}-16x^{4}+8x^{2}-y^{2}-8yx^{2}+2y-1+\left(\left(y+1\right)\left(y-1\right)\right)^{2}+8x^{2}\left(y-1\right)
To find the opposite of 16x^{4}-8x^{2}+y^{2}+8yx^{2}-2y+1, find the opposite of each term.
-y^{4}+8x^{2}-y^{2}-8yx^{2}+2y-1+\left(\left(y+1\right)\left(y-1\right)\right)^{2}+8x^{2}\left(y-1\right)
Combine 16x^{4} and -16x^{4} to get 0.
-y^{4}+8x^{2}-y^{2}-8yx^{2}+2y-1+\left(y^{2}-1\right)^{2}+8x^{2}\left(y-1\right)
Consider \left(y+1\right)\left(y-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
-y^{4}+8x^{2}-y^{2}-8yx^{2}+2y-1+\left(y^{2}\right)^{2}-2y^{2}+1+8x^{2}\left(y-1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y^{2}-1\right)^{2}.
-y^{4}+8x^{2}-y^{2}-8yx^{2}+2y-1+y^{4}-2y^{2}+1+8x^{2}\left(y-1\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
8x^{2}-y^{2}-8yx^{2}+2y-1-2y^{2}+1+8x^{2}\left(y-1\right)
Combine -y^{4} and y^{4} to get 0.
8x^{2}-3y^{2}-8yx^{2}+2y-1+1+8x^{2}\left(y-1\right)
Combine -y^{2} and -2y^{2} to get -3y^{2}.
8x^{2}-3y^{2}-8yx^{2}+2y+8x^{2}\left(y-1\right)
Add -1 and 1 to get 0.
8x^{2}-3y^{2}-8yx^{2}+2y+8x^{2}y-8x^{2}
Use the distributive property to multiply 8x^{2} by y-1.
8x^{2}-3y^{2}+2y-8x^{2}
Combine -8yx^{2} and 8x^{2}y to get 0.
-3y^{2}+2y
Combine 8x^{2} and -8x^{2} to get 0.
\left(4x^{2}-y^{2}\right)\left(4x^{2}+y^{2}\right)-\left(4x^{2}+y-1\right)^{2}+\left(\left(y+1\right)\left(y-1\right)\right)^{2}+8x^{2}\left(y-1\right)
Use the distributive property to multiply 2x+y by 2x-y and combine like terms.
\left(4x^{2}\right)^{2}-\left(y^{2}\right)^{2}-\left(4x^{2}+y-1\right)^{2}+\left(\left(y+1\right)\left(y-1\right)\right)^{2}+8x^{2}\left(y-1\right)
Consider \left(4x^{2}-y^{2}\right)\left(4x^{2}+y^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(4x^{2}\right)^{2}-y^{4}-\left(4x^{2}+y-1\right)^{2}+\left(\left(y+1\right)\left(y-1\right)\right)^{2}+8x^{2}\left(y-1\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
4^{2}\left(x^{2}\right)^{2}-y^{4}-\left(4x^{2}+y-1\right)^{2}+\left(\left(y+1\right)\left(y-1\right)\right)^{2}+8x^{2}\left(y-1\right)
Expand \left(4x^{2}\right)^{2}.
4^{2}x^{4}-y^{4}-\left(4x^{2}+y-1\right)^{2}+\left(\left(y+1\right)\left(y-1\right)\right)^{2}+8x^{2}\left(y-1\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
16x^{4}-y^{4}-\left(4x^{2}+y-1\right)^{2}+\left(\left(y+1\right)\left(y-1\right)\right)^{2}+8x^{2}\left(y-1\right)
Calculate 4 to the power of 2 and get 16.
16x^{4}-y^{4}-\left(16x^{4}-8x^{2}+y^{2}+8yx^{2}-2y+1\right)+\left(\left(y+1\right)\left(y-1\right)\right)^{2}+8x^{2}\left(y-1\right)
Square 4x^{2}+y-1.
16x^{4}-y^{4}-16x^{4}+8x^{2}-y^{2}-8yx^{2}+2y-1+\left(\left(y+1\right)\left(y-1\right)\right)^{2}+8x^{2}\left(y-1\right)
To find the opposite of 16x^{4}-8x^{2}+y^{2}+8yx^{2}-2y+1, find the opposite of each term.
-y^{4}+8x^{2}-y^{2}-8yx^{2}+2y-1+\left(\left(y+1\right)\left(y-1\right)\right)^{2}+8x^{2}\left(y-1\right)
Combine 16x^{4} and -16x^{4} to get 0.
-y^{4}+8x^{2}-y^{2}-8yx^{2}+2y-1+\left(y^{2}-1\right)^{2}+8x^{2}\left(y-1\right)
Consider \left(y+1\right)\left(y-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
-y^{4}+8x^{2}-y^{2}-8yx^{2}+2y-1+\left(y^{2}\right)^{2}-2y^{2}+1+8x^{2}\left(y-1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y^{2}-1\right)^{2}.
-y^{4}+8x^{2}-y^{2}-8yx^{2}+2y-1+y^{4}-2y^{2}+1+8x^{2}\left(y-1\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
8x^{2}-y^{2}-8yx^{2}+2y-1-2y^{2}+1+8x^{2}\left(y-1\right)
Combine -y^{4} and y^{4} to get 0.
8x^{2}-3y^{2}-8yx^{2}+2y-1+1+8x^{2}\left(y-1\right)
Combine -y^{2} and -2y^{2} to get -3y^{2}.
8x^{2}-3y^{2}-8yx^{2}+2y+8x^{2}\left(y-1\right)
Add -1 and 1 to get 0.
8x^{2}-3y^{2}-8yx^{2}+2y+8x^{2}y-8x^{2}
Use the distributive property to multiply 8x^{2} by y-1.
8x^{2}-3y^{2}+2y-8x^{2}
Combine -8yx^{2} and 8x^{2}y to get 0.
-3y^{2}+2y
Combine 8x^{2} and -8x^{2} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}