Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(2x\right)^{2}-y^{2}+\left(x+y\right)^{2}-2\left(x^{2}-xy\right)
Consider \left(2x+y\right)\left(2x-y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}x^{2}-y^{2}+\left(x+y\right)^{2}-2\left(x^{2}-xy\right)
Expand \left(2x\right)^{2}.
4x^{2}-y^{2}+\left(x+y\right)^{2}-2\left(x^{2}-xy\right)
Calculate 2 to the power of 2 and get 4.
4x^{2}-y^{2}+x^{2}+2xy+y^{2}-2\left(x^{2}-xy\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+y\right)^{2}.
5x^{2}-y^{2}+2xy+y^{2}-2\left(x^{2}-xy\right)
Combine 4x^{2} and x^{2} to get 5x^{2}.
5x^{2}+2xy-2\left(x^{2}-xy\right)
Combine -y^{2} and y^{2} to get 0.
5x^{2}+2xy-2x^{2}+2xy
Use the distributive property to multiply -2 by x^{2}-xy.
3x^{2}+2xy+2xy
Combine 5x^{2} and -2x^{2} to get 3x^{2}.
3x^{2}+4xy
Combine 2xy and 2xy to get 4xy.
\left(2x\right)^{2}-y^{2}+\left(x+y\right)^{2}-2\left(x^{2}-xy\right)
Consider \left(2x+y\right)\left(2x-y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}x^{2}-y^{2}+\left(x+y\right)^{2}-2\left(x^{2}-xy\right)
Expand \left(2x\right)^{2}.
4x^{2}-y^{2}+\left(x+y\right)^{2}-2\left(x^{2}-xy\right)
Calculate 2 to the power of 2 and get 4.
4x^{2}-y^{2}+x^{2}+2xy+y^{2}-2\left(x^{2}-xy\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+y\right)^{2}.
5x^{2}-y^{2}+2xy+y^{2}-2\left(x^{2}-xy\right)
Combine 4x^{2} and x^{2} to get 5x^{2}.
5x^{2}+2xy-2\left(x^{2}-xy\right)
Combine -y^{2} and y^{2} to get 0.
5x^{2}+2xy-2x^{2}+2xy
Use the distributive property to multiply -2 by x^{2}-xy.
3x^{2}+2xy+2xy
Combine 5x^{2} and -2x^{2} to get 3x^{2}.
3x^{2}+4xy
Combine 2xy and 2xy to get 4xy.