( 2 x + y + 1 ) d x - ( 4 x + 2 y - 3 ) d y = 0
Solve for d (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&x=\frac{\sqrt{25y^{2}-30y+1}+3y-1}{4}\text{ or }x=\frac{-\sqrt{25y^{2}-30y+1}+3y-1}{4}\end{matrix}\right.
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&\left(x=\frac{\sqrt{25y^{2}-30y+1}+3y-1}{4}\text{ and }y\leq \frac{3-2\sqrt{2}}{5}\right)\text{ or }\left(x=\frac{\sqrt{25y^{2}-30y+1}+3y-1}{4}\text{ and }y\geq \frac{2\sqrt{2}+3}{5}\right)\text{ or }\left(x=\frac{-\sqrt{25y^{2}-30y+1}+3y-1}{4}\text{ and }y\leq \frac{3-2\sqrt{2}}{5}\right)\text{ or }\left(x=\frac{-\sqrt{25y^{2}-30y+1}+3y-1}{4}\text{ and }y\geq \frac{2\sqrt{2}+3}{5}\right)\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}\\x=\frac{\sqrt{25y^{2}-30y+1}+3y-1}{4}\text{; }x=\frac{-\sqrt{25y^{2}-30y+1}+3y-1}{4}\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&d=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{25y^{2}-30y+1}+3y-1}{4}\text{; }x=\frac{-\sqrt{25y^{2}-30y+1}+3y-1}{4}\text{, }&y\geq \frac{2\sqrt{2}+3}{5}\text{ or }y\leq \frac{3-2\sqrt{2}}{5}\\x\in \mathrm{R}\text{, }&d=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(2xd+yd+d\right)x-\left(4x+2y-3\right)dy=0
Use the distributive property to multiply 2x+y+1 by d.
2dx^{2}+ydx+dx-\left(4x+2y-3\right)dy=0
Use the distributive property to multiply 2xd+yd+d by x.
2dx^{2}+ydx+dx-\left(4xd+2yd-3d\right)y=0
Use the distributive property to multiply 4x+2y-3 by d.
2dx^{2}+ydx+dx-\left(4xdy+2dy^{2}-3dy\right)=0
Use the distributive property to multiply 4xd+2yd-3d by y.
2dx^{2}+ydx+dx-4xdy-2dy^{2}+3dy=0
To find the opposite of 4xdy+2dy^{2}-3dy, find the opposite of each term.
2dx^{2}-3ydx+dx-2dy^{2}+3dy=0
Combine ydx and -4xdy to get -3ydx.
\left(2x^{2}-3yx+x-2y^{2}+3y\right)d=0
Combine all terms containing d.
\left(2x^{2}-3xy+x-2y^{2}+3y\right)d=0
The equation is in standard form.
d=0
Divide 0 by 2x^{2}-3yx+x-2y^{2}+3y.
\left(2xd+yd+d\right)x-\left(4x+2y-3\right)dy=0
Use the distributive property to multiply 2x+y+1 by d.
2dx^{2}+ydx+dx-\left(4x+2y-3\right)dy=0
Use the distributive property to multiply 2xd+yd+d by x.
2dx^{2}+ydx+dx-\left(4xd+2yd-3d\right)y=0
Use the distributive property to multiply 4x+2y-3 by d.
2dx^{2}+ydx+dx-\left(4xdy+2dy^{2}-3dy\right)=0
Use the distributive property to multiply 4xd+2yd-3d by y.
2dx^{2}+ydx+dx-4xdy-2dy^{2}+3dy=0
To find the opposite of 4xdy+2dy^{2}-3dy, find the opposite of each term.
2dx^{2}-3ydx+dx-2dy^{2}+3dy=0
Combine ydx and -4xdy to get -3ydx.
\left(2x^{2}-3yx+x-2y^{2}+3y\right)d=0
Combine all terms containing d.
\left(2x^{2}-3xy+x-2y^{2}+3y\right)d=0
The equation is in standard form.
d=0
Divide 0 by 2x^{2}-3yx+x-2y^{2}+3y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}