Solve for x (complex solution)
\left\{\begin{matrix}\\x=\frac{a+1}{4}\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&a=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=\frac{a+1}{4}\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&a=0\end{matrix}\right.
Solve for a
a=4x-1
a=0
Graph
Quiz
Linear Equation
5 problems similar to:
( 2 x + a ) ^ { 2 } - ( 2 x - a ) ^ { 2 } - 2 a = 2 a ^ { 2 }
Share
Copied to clipboard
4x^{2}+4xa+a^{2}-\left(2x-a\right)^{2}-2a=2a^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(2x+a\right)^{2}.
4x^{2}+4xa+a^{2}-\left(4x^{2}-4xa+a^{2}\right)-2a=2a^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2x-a\right)^{2}.
4x^{2}+4xa+a^{2}-4x^{2}+4xa-a^{2}-2a=2a^{2}
To find the opposite of 4x^{2}-4xa+a^{2}, find the opposite of each term.
4xa+a^{2}+4xa-a^{2}-2a=2a^{2}
Combine 4x^{2} and -4x^{2} to get 0.
8xa+a^{2}-a^{2}-2a=2a^{2}
Combine 4xa and 4xa to get 8xa.
8xa-2a=2a^{2}
Combine a^{2} and -a^{2} to get 0.
8xa=2a^{2}+2a
Add 2a to both sides.
8ax=2a^{2}+2a
The equation is in standard form.
\frac{8ax}{8a}=\frac{2a\left(a+1\right)}{8a}
Divide both sides by 8a.
x=\frac{2a\left(a+1\right)}{8a}
Dividing by 8a undoes the multiplication by 8a.
x=\frac{a+1}{4}
Divide 2a\left(1+a\right) by 8a.
4x^{2}+4xa+a^{2}-\left(2x-a\right)^{2}-2a=2a^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(2x+a\right)^{2}.
4x^{2}+4xa+a^{2}-\left(4x^{2}-4xa+a^{2}\right)-2a=2a^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2x-a\right)^{2}.
4x^{2}+4xa+a^{2}-4x^{2}+4xa-a^{2}-2a=2a^{2}
To find the opposite of 4x^{2}-4xa+a^{2}, find the opposite of each term.
4xa+a^{2}+4xa-a^{2}-2a=2a^{2}
Combine 4x^{2} and -4x^{2} to get 0.
8xa+a^{2}-a^{2}-2a=2a^{2}
Combine 4xa and 4xa to get 8xa.
8xa-2a=2a^{2}
Combine a^{2} and -a^{2} to get 0.
8xa=2a^{2}+2a
Add 2a to both sides.
8ax=2a^{2}+2a
The equation is in standard form.
\frac{8ax}{8a}=\frac{2a\left(a+1\right)}{8a}
Divide both sides by 8a.
x=\frac{2a\left(a+1\right)}{8a}
Dividing by 8a undoes the multiplication by 8a.
x=\frac{a+1}{4}
Divide 2a\left(1+a\right) by 8a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}