Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Solve for a
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+4xa+a^{2}-\left(2x-a\right)^{2}-2a=2a^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(2x+a\right)^{2}.
4x^{2}+4xa+a^{2}-\left(4x^{2}-4xa+a^{2}\right)-2a=2a^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2x-a\right)^{2}.
4x^{2}+4xa+a^{2}-4x^{2}+4xa-a^{2}-2a=2a^{2}
To find the opposite of 4x^{2}-4xa+a^{2}, find the opposite of each term.
4xa+a^{2}+4xa-a^{2}-2a=2a^{2}
Combine 4x^{2} and -4x^{2} to get 0.
8xa+a^{2}-a^{2}-2a=2a^{2}
Combine 4xa and 4xa to get 8xa.
8xa-2a=2a^{2}
Combine a^{2} and -a^{2} to get 0.
8xa=2a^{2}+2a
Add 2a to both sides.
8ax=2a^{2}+2a
The equation is in standard form.
\frac{8ax}{8a}=\frac{2a\left(a+1\right)}{8a}
Divide both sides by 8a.
x=\frac{2a\left(a+1\right)}{8a}
Dividing by 8a undoes the multiplication by 8a.
x=\frac{a+1}{4}
Divide 2a\left(1+a\right) by 8a.
4x^{2}+4xa+a^{2}-\left(2x-a\right)^{2}-2a=2a^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(2x+a\right)^{2}.
4x^{2}+4xa+a^{2}-\left(4x^{2}-4xa+a^{2}\right)-2a=2a^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2x-a\right)^{2}.
4x^{2}+4xa+a^{2}-4x^{2}+4xa-a^{2}-2a=2a^{2}
To find the opposite of 4x^{2}-4xa+a^{2}, find the opposite of each term.
4xa+a^{2}+4xa-a^{2}-2a=2a^{2}
Combine 4x^{2} and -4x^{2} to get 0.
8xa+a^{2}-a^{2}-2a=2a^{2}
Combine 4xa and 4xa to get 8xa.
8xa-2a=2a^{2}
Combine a^{2} and -a^{2} to get 0.
8xa=2a^{2}+2a
Add 2a to both sides.
8ax=2a^{2}+2a
The equation is in standard form.
\frac{8ax}{8a}=\frac{2a\left(a+1\right)}{8a}
Divide both sides by 8a.
x=\frac{2a\left(a+1\right)}{8a}
Dividing by 8a undoes the multiplication by 8a.
x=\frac{a+1}{4}
Divide 2a\left(1+a\right) by 8a.