Solve for x (complex solution)
x=\frac{-8+2\sqrt{61}i}{11}\approx -0.727272727+1.420045396i
x=\frac{-2\sqrt{61}i-8}{11}\approx -0.727272727-1.420045396i
Graph
Share
Copied to clipboard
2x^{2}+16x+32+9x^{2}-4=0
Use the distributive property to multiply 2x+8 by x+4 and combine like terms.
11x^{2}+16x+32-4=0
Combine 2x^{2} and 9x^{2} to get 11x^{2}.
11x^{2}+16x+28=0
Subtract 4 from 32 to get 28.
x=\frac{-16±\sqrt{16^{2}-4\times 11\times 28}}{2\times 11}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 11 for a, 16 for b, and 28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 11\times 28}}{2\times 11}
Square 16.
x=\frac{-16±\sqrt{256-44\times 28}}{2\times 11}
Multiply -4 times 11.
x=\frac{-16±\sqrt{256-1232}}{2\times 11}
Multiply -44 times 28.
x=\frac{-16±\sqrt{-976}}{2\times 11}
Add 256 to -1232.
x=\frac{-16±4\sqrt{61}i}{2\times 11}
Take the square root of -976.
x=\frac{-16±4\sqrt{61}i}{22}
Multiply 2 times 11.
x=\frac{-16+4\sqrt{61}i}{22}
Now solve the equation x=\frac{-16±4\sqrt{61}i}{22} when ± is plus. Add -16 to 4i\sqrt{61}.
x=\frac{-8+2\sqrt{61}i}{11}
Divide -16+4i\sqrt{61} by 22.
x=\frac{-4\sqrt{61}i-16}{22}
Now solve the equation x=\frac{-16±4\sqrt{61}i}{22} when ± is minus. Subtract 4i\sqrt{61} from -16.
x=\frac{-2\sqrt{61}i-8}{11}
Divide -16-4i\sqrt{61} by 22.
x=\frac{-8+2\sqrt{61}i}{11} x=\frac{-2\sqrt{61}i-8}{11}
The equation is now solved.
2x^{2}+16x+32+9x^{2}-4=0
Use the distributive property to multiply 2x+8 by x+4 and combine like terms.
11x^{2}+16x+32-4=0
Combine 2x^{2} and 9x^{2} to get 11x^{2}.
11x^{2}+16x+28=0
Subtract 4 from 32 to get 28.
11x^{2}+16x=-28
Subtract 28 from both sides. Anything subtracted from zero gives its negation.
\frac{11x^{2}+16x}{11}=-\frac{28}{11}
Divide both sides by 11.
x^{2}+\frac{16}{11}x=-\frac{28}{11}
Dividing by 11 undoes the multiplication by 11.
x^{2}+\frac{16}{11}x+\left(\frac{8}{11}\right)^{2}=-\frac{28}{11}+\left(\frac{8}{11}\right)^{2}
Divide \frac{16}{11}, the coefficient of the x term, by 2 to get \frac{8}{11}. Then add the square of \frac{8}{11} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{16}{11}x+\frac{64}{121}=-\frac{28}{11}+\frac{64}{121}
Square \frac{8}{11} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{16}{11}x+\frac{64}{121}=-\frac{244}{121}
Add -\frac{28}{11} to \frac{64}{121} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{8}{11}\right)^{2}=-\frac{244}{121}
Factor x^{2}+\frac{16}{11}x+\frac{64}{121}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{8}{11}\right)^{2}}=\sqrt{-\frac{244}{121}}
Take the square root of both sides of the equation.
x+\frac{8}{11}=\frac{2\sqrt{61}i}{11} x+\frac{8}{11}=-\frac{2\sqrt{61}i}{11}
Simplify.
x=\frac{-8+2\sqrt{61}i}{11} x=\frac{-2\sqrt{61}i-8}{11}
Subtract \frac{8}{11} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}