Solve for x
x = -\frac{13}{5} = -2\frac{3}{5} = -2.6
x=1
Graph
Share
Copied to clipboard
4x^{2}+28x+49=9\left(x+2\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+7\right)^{2}.
4x^{2}+28x+49=9\left(x^{2}+4x+4\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
4x^{2}+28x+49=9x^{2}+36x+36
Use the distributive property to multiply 9 by x^{2}+4x+4.
4x^{2}+28x+49-9x^{2}=36x+36
Subtract 9x^{2} from both sides.
-5x^{2}+28x+49=36x+36
Combine 4x^{2} and -9x^{2} to get -5x^{2}.
-5x^{2}+28x+49-36x=36
Subtract 36x from both sides.
-5x^{2}-8x+49=36
Combine 28x and -36x to get -8x.
-5x^{2}-8x+49-36=0
Subtract 36 from both sides.
-5x^{2}-8x+13=0
Subtract 36 from 49 to get 13.
a+b=-8 ab=-5\times 13=-65
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -5x^{2}+ax+bx+13. To find a and b, set up a system to be solved.
1,-65 5,-13
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -65.
1-65=-64 5-13=-8
Calculate the sum for each pair.
a=5 b=-13
The solution is the pair that gives sum -8.
\left(-5x^{2}+5x\right)+\left(-13x+13\right)
Rewrite -5x^{2}-8x+13 as \left(-5x^{2}+5x\right)+\left(-13x+13\right).
5x\left(-x+1\right)+13\left(-x+1\right)
Factor out 5x in the first and 13 in the second group.
\left(-x+1\right)\left(5x+13\right)
Factor out common term -x+1 by using distributive property.
x=1 x=-\frac{13}{5}
To find equation solutions, solve -x+1=0 and 5x+13=0.
4x^{2}+28x+49=9\left(x+2\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+7\right)^{2}.
4x^{2}+28x+49=9\left(x^{2}+4x+4\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
4x^{2}+28x+49=9x^{2}+36x+36
Use the distributive property to multiply 9 by x^{2}+4x+4.
4x^{2}+28x+49-9x^{2}=36x+36
Subtract 9x^{2} from both sides.
-5x^{2}+28x+49=36x+36
Combine 4x^{2} and -9x^{2} to get -5x^{2}.
-5x^{2}+28x+49-36x=36
Subtract 36x from both sides.
-5x^{2}-8x+49=36
Combine 28x and -36x to get -8x.
-5x^{2}-8x+49-36=0
Subtract 36 from both sides.
-5x^{2}-8x+13=0
Subtract 36 from 49 to get 13.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-5\right)\times 13}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, -8 for b, and 13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-5\right)\times 13}}{2\left(-5\right)}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64+20\times 13}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-\left(-8\right)±\sqrt{64+260}}{2\left(-5\right)}
Multiply 20 times 13.
x=\frac{-\left(-8\right)±\sqrt{324}}{2\left(-5\right)}
Add 64 to 260.
x=\frac{-\left(-8\right)±18}{2\left(-5\right)}
Take the square root of 324.
x=\frac{8±18}{2\left(-5\right)}
The opposite of -8 is 8.
x=\frac{8±18}{-10}
Multiply 2 times -5.
x=\frac{26}{-10}
Now solve the equation x=\frac{8±18}{-10} when ± is plus. Add 8 to 18.
x=-\frac{13}{5}
Reduce the fraction \frac{26}{-10} to lowest terms by extracting and canceling out 2.
x=-\frac{10}{-10}
Now solve the equation x=\frac{8±18}{-10} when ± is minus. Subtract 18 from 8.
x=1
Divide -10 by -10.
x=-\frac{13}{5} x=1
The equation is now solved.
4x^{2}+28x+49=9\left(x+2\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+7\right)^{2}.
4x^{2}+28x+49=9\left(x^{2}+4x+4\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
4x^{2}+28x+49=9x^{2}+36x+36
Use the distributive property to multiply 9 by x^{2}+4x+4.
4x^{2}+28x+49-9x^{2}=36x+36
Subtract 9x^{2} from both sides.
-5x^{2}+28x+49=36x+36
Combine 4x^{2} and -9x^{2} to get -5x^{2}.
-5x^{2}+28x+49-36x=36
Subtract 36x from both sides.
-5x^{2}-8x+49=36
Combine 28x and -36x to get -8x.
-5x^{2}-8x=36-49
Subtract 49 from both sides.
-5x^{2}-8x=-13
Subtract 49 from 36 to get -13.
\frac{-5x^{2}-8x}{-5}=-\frac{13}{-5}
Divide both sides by -5.
x^{2}+\left(-\frac{8}{-5}\right)x=-\frac{13}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}+\frac{8}{5}x=-\frac{13}{-5}
Divide -8 by -5.
x^{2}+\frac{8}{5}x=\frac{13}{5}
Divide -13 by -5.
x^{2}+\frac{8}{5}x+\left(\frac{4}{5}\right)^{2}=\frac{13}{5}+\left(\frac{4}{5}\right)^{2}
Divide \frac{8}{5}, the coefficient of the x term, by 2 to get \frac{4}{5}. Then add the square of \frac{4}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{8}{5}x+\frac{16}{25}=\frac{13}{5}+\frac{16}{25}
Square \frac{4}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{8}{5}x+\frac{16}{25}=\frac{81}{25}
Add \frac{13}{5} to \frac{16}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{4}{5}\right)^{2}=\frac{81}{25}
Factor x^{2}+\frac{8}{5}x+\frac{16}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{4}{5}\right)^{2}}=\sqrt{\frac{81}{25}}
Take the square root of both sides of the equation.
x+\frac{4}{5}=\frac{9}{5} x+\frac{4}{5}=-\frac{9}{5}
Simplify.
x=1 x=-\frac{13}{5}
Subtract \frac{4}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}