Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+20x+24=120
Use the distributive property to multiply 2x+6 by 2x+4 and combine like terms.
4x^{2}+20x+24-120=0
Subtract 120 from both sides.
4x^{2}+20x-96=0
Subtract 120 from 24 to get -96.
x=\frac{-20±\sqrt{20^{2}-4\times 4\left(-96\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 20 for b, and -96 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\times 4\left(-96\right)}}{2\times 4}
Square 20.
x=\frac{-20±\sqrt{400-16\left(-96\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-20±\sqrt{400+1536}}{2\times 4}
Multiply -16 times -96.
x=\frac{-20±\sqrt{1936}}{2\times 4}
Add 400 to 1536.
x=\frac{-20±44}{2\times 4}
Take the square root of 1936.
x=\frac{-20±44}{8}
Multiply 2 times 4.
x=\frac{24}{8}
Now solve the equation x=\frac{-20±44}{8} when ± is plus. Add -20 to 44.
x=3
Divide 24 by 8.
x=-\frac{64}{8}
Now solve the equation x=\frac{-20±44}{8} when ± is minus. Subtract 44 from -20.
x=-8
Divide -64 by 8.
x=3 x=-8
The equation is now solved.
4x^{2}+20x+24=120
Use the distributive property to multiply 2x+6 by 2x+4 and combine like terms.
4x^{2}+20x=120-24
Subtract 24 from both sides.
4x^{2}+20x=96
Subtract 24 from 120 to get 96.
\frac{4x^{2}+20x}{4}=\frac{96}{4}
Divide both sides by 4.
x^{2}+\frac{20}{4}x=\frac{96}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+5x=\frac{96}{4}
Divide 20 by 4.
x^{2}+5x=24
Divide 96 by 4.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=24+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=24+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=\frac{121}{4}
Add 24 to \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{121}{4}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{11}{2} x+\frac{5}{2}=-\frac{11}{2}
Simplify.
x=3 x=-8
Subtract \frac{5}{2} from both sides of the equation.