Solve for x (complex solution)
x=-\frac{\sqrt{7}i}{2}-2
x=\frac{\sqrt{7}i}{2}-2\text{, }b\neq 0
Solve for b (complex solution)
b\neq 0
x=-\frac{\sqrt{7}i}{2}-2\text{ or }x=\frac{\sqrt{7}i}{2}-2
Graph
Share
Copied to clipboard
\left(2x+4\right)^{2}=1-8
Subtracting 8 from itself leaves 0.
\left(2x+4\right)^{2}=-7
Subtract 8 from 1.
2x+4=\sqrt{7}i 2x+4=-\sqrt{7}i
Take the square root of both sides of the equation.
2x+4-4=\sqrt{7}i-4 2x+4-4=-\sqrt{7}i-4
Subtract 4 from both sides of the equation.
2x=\sqrt{7}i-4 2x=-\sqrt{7}i-4
Subtracting 4 from itself leaves 0.
2x=-4+\sqrt{7}i
Subtract 4 from i\sqrt{7}.
2x=-\sqrt{7}i-4
Subtract 4 from -i\sqrt{7}.
\frac{2x}{2}=\frac{-4+\sqrt{7}i}{2} \frac{2x}{2}=\frac{-\sqrt{7}i-4}{2}
Divide both sides by 2.
x=\frac{-4+\sqrt{7}i}{2} x=\frac{-\sqrt{7}i-4}{2}
Dividing by 2 undoes the multiplication by 2.
x=\frac{\sqrt{7}i}{2}-2
Divide i\sqrt{7}-4 by 2.
x=-\frac{\sqrt{7}i}{2}-2
Divide -i\sqrt{7}-4 by 2.
x=\frac{\sqrt{7}i}{2}-2 x=-\frac{\sqrt{7}i}{2}-2
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}