Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-\left(3x-2\right)^{2}-40x^{2}=-205
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+4\right)^{2}.
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-\left(9x^{2}-12x+4\right)-40x^{2}=-205
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-2\right)^{2}.
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-9x^{2}+12x-4-40x^{2}=-205
To find the opposite of 9x^{2}-12x+4, find the opposite of each term.
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-49x^{2}+12x-4=-205
Combine -9x^{2} and -40x^{2} to get -49x^{2}.
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-49x^{2}+12x-4+205=0
Add 205 to both sides.
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-49x^{2}+12x+201=0
Add -4 and 205 to get 201.
4x^{2}+16x+16+\left(-35x+15x^{2}\right)\left(7+3x\right)-49x^{2}+12x+201=0
Use the distributive property to multiply -5x by 7-3x.
4x^{2}+16x+16-245x+45x^{3}-49x^{2}+12x+201=0
Use the distributive property to multiply -35x+15x^{2} by 7+3x and combine like terms.
4x^{2}-229x+16+45x^{3}-49x^{2}+12x+201=0
Combine 16x and -245x to get -229x.
-45x^{2}-229x+16+45x^{3}+12x+201=0
Combine 4x^{2} and -49x^{2} to get -45x^{2}.
-45x^{2}-217x+16+45x^{3}+201=0
Combine -229x and 12x to get -217x.
-45x^{2}-217x+217+45x^{3}=0
Add 16 and 201 to get 217.
45x^{3}-45x^{2}-217x+217=0
Rearrange the equation to put it in standard form. Place the terms in order from highest to lowest power.
±\frac{217}{45},±\frac{217}{15},±\frac{217}{9},±\frac{217}{5},±\frac{217}{3},±217,±\frac{31}{45},±\frac{31}{15},±\frac{31}{9},±\frac{31}{5},±\frac{31}{3},±31,±\frac{7}{45},±\frac{7}{15},±\frac{7}{9},±\frac{7}{5},±\frac{7}{3},±7,±\frac{1}{45},±\frac{1}{15},±\frac{1}{9},±\frac{1}{5},±\frac{1}{3},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 217 and q divides the leading coefficient 45. List all candidates \frac{p}{q}.
x=1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
45x^{2}-217=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 45x^{3}-45x^{2}-217x+217 by x-1 to get 45x^{2}-217. Solve the equation where the result equals to 0.
x=\frac{0±\sqrt{0^{2}-4\times 45\left(-217\right)}}{2\times 45}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 45 for a, 0 for b, and -217 for c in the quadratic formula.
x=\frac{0±6\sqrt{1085}}{90}
Do the calculations.
x=-\frac{\sqrt{1085}}{15} x=\frac{\sqrt{1085}}{15}
Solve the equation 45x^{2}-217=0 when ± is plus and when ± is minus.
x=1 x=-\frac{\sqrt{1085}}{15} x=\frac{\sqrt{1085}}{15}
List all found solutions.