Solve for x
x = -\frac{7}{2} = -3\frac{1}{2} = -3.5
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Graph
Share
Copied to clipboard
4x^{2}+16x+16+2\left(2x+4\right)-3=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+4\right)^{2}.
4x^{2}+16x+16+4x+8-3=0
Use the distributive property to multiply 2 by 2x+4.
4x^{2}+20x+16+8-3=0
Combine 16x and 4x to get 20x.
4x^{2}+20x+24-3=0
Add 16 and 8 to get 24.
4x^{2}+20x+21=0
Subtract 3 from 24 to get 21.
a+b=20 ab=4\times 21=84
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4x^{2}+ax+bx+21. To find a and b, set up a system to be solved.
1,84 2,42 3,28 4,21 6,14 7,12
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 84.
1+84=85 2+42=44 3+28=31 4+21=25 6+14=20 7+12=19
Calculate the sum for each pair.
a=6 b=14
The solution is the pair that gives sum 20.
\left(4x^{2}+6x\right)+\left(14x+21\right)
Rewrite 4x^{2}+20x+21 as \left(4x^{2}+6x\right)+\left(14x+21\right).
2x\left(2x+3\right)+7\left(2x+3\right)
Factor out 2x in the first and 7 in the second group.
\left(2x+3\right)\left(2x+7\right)
Factor out common term 2x+3 by using distributive property.
x=-\frac{3}{2} x=-\frac{7}{2}
To find equation solutions, solve 2x+3=0 and 2x+7=0.
4x^{2}+16x+16+2\left(2x+4\right)-3=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+4\right)^{2}.
4x^{2}+16x+16+4x+8-3=0
Use the distributive property to multiply 2 by 2x+4.
4x^{2}+20x+16+8-3=0
Combine 16x and 4x to get 20x.
4x^{2}+20x+24-3=0
Add 16 and 8 to get 24.
4x^{2}+20x+21=0
Subtract 3 from 24 to get 21.
x=\frac{-20±\sqrt{20^{2}-4\times 4\times 21}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 20 for b, and 21 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\times 4\times 21}}{2\times 4}
Square 20.
x=\frac{-20±\sqrt{400-16\times 21}}{2\times 4}
Multiply -4 times 4.
x=\frac{-20±\sqrt{400-336}}{2\times 4}
Multiply -16 times 21.
x=\frac{-20±\sqrt{64}}{2\times 4}
Add 400 to -336.
x=\frac{-20±8}{2\times 4}
Take the square root of 64.
x=\frac{-20±8}{8}
Multiply 2 times 4.
x=-\frac{12}{8}
Now solve the equation x=\frac{-20±8}{8} when ± is plus. Add -20 to 8.
x=-\frac{3}{2}
Reduce the fraction \frac{-12}{8} to lowest terms by extracting and canceling out 4.
x=-\frac{28}{8}
Now solve the equation x=\frac{-20±8}{8} when ± is minus. Subtract 8 from -20.
x=-\frac{7}{2}
Reduce the fraction \frac{-28}{8} to lowest terms by extracting and canceling out 4.
x=-\frac{3}{2} x=-\frac{7}{2}
The equation is now solved.
4x^{2}+16x+16+2\left(2x+4\right)-3=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+4\right)^{2}.
4x^{2}+16x+16+4x+8-3=0
Use the distributive property to multiply 2 by 2x+4.
4x^{2}+20x+16+8-3=0
Combine 16x and 4x to get 20x.
4x^{2}+20x+24-3=0
Add 16 and 8 to get 24.
4x^{2}+20x+21=0
Subtract 3 from 24 to get 21.
4x^{2}+20x=-21
Subtract 21 from both sides. Anything subtracted from zero gives its negation.
\frac{4x^{2}+20x}{4}=-\frac{21}{4}
Divide both sides by 4.
x^{2}+\frac{20}{4}x=-\frac{21}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+5x=-\frac{21}{4}
Divide 20 by 4.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-\frac{21}{4}+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=\frac{-21+25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=1
Add -\frac{21}{4} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{2}\right)^{2}=1
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x+\frac{5}{2}=1 x+\frac{5}{2}=-1
Simplify.
x=-\frac{3}{2} x=-\frac{7}{2}
Subtract \frac{5}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}