Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

4x^{2}+12xy+9y^{2}-\left(4x-9y\right)\left(4x+9y\right)+\left(3x-2y\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3y\right)^{2}.
4x^{2}+12xy+9y^{2}-\left(\left(4x\right)^{2}-\left(9y\right)^{2}\right)+\left(3x-2y\right)^{2}
Consider \left(4x-9y\right)\left(4x+9y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4x^{2}+12xy+9y^{2}-\left(4^{2}x^{2}-\left(9y\right)^{2}\right)+\left(3x-2y\right)^{2}
Expand \left(4x\right)^{2}.
4x^{2}+12xy+9y^{2}-\left(16x^{2}-\left(9y\right)^{2}\right)+\left(3x-2y\right)^{2}
Calculate 4 to the power of 2 and get 16.
4x^{2}+12xy+9y^{2}-\left(16x^{2}-9^{2}y^{2}\right)+\left(3x-2y\right)^{2}
Expand \left(9y\right)^{2}.
4x^{2}+12xy+9y^{2}-\left(16x^{2}-81y^{2}\right)+\left(3x-2y\right)^{2}
Calculate 9 to the power of 2 and get 81.
4x^{2}+12xy+9y^{2}-16x^{2}+81y^{2}+\left(3x-2y\right)^{2}
To find the opposite of 16x^{2}-81y^{2}, find the opposite of each term.
-12x^{2}+12xy+9y^{2}+81y^{2}+\left(3x-2y\right)^{2}
Combine 4x^{2} and -16x^{2} to get -12x^{2}.
-12x^{2}+12xy+90y^{2}+\left(3x-2y\right)^{2}
Combine 9y^{2} and 81y^{2} to get 90y^{2}.
-12x^{2}+12xy+90y^{2}+9x^{2}-12xy+4y^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-2y\right)^{2}.
-3x^{2}+12xy+90y^{2}-12xy+4y^{2}
Combine -12x^{2} and 9x^{2} to get -3x^{2}.
-3x^{2}+90y^{2}+4y^{2}
Combine 12xy and -12xy to get 0.
-3x^{2}+94y^{2}
Combine 90y^{2} and 4y^{2} to get 94y^{2}.
4x^{2}+12xy+9y^{2}-\left(4x-9y\right)\left(4x+9y\right)+\left(3x-2y\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3y\right)^{2}.
4x^{2}+12xy+9y^{2}-\left(\left(4x\right)^{2}-\left(9y\right)^{2}\right)+\left(3x-2y\right)^{2}
Consider \left(4x-9y\right)\left(4x+9y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4x^{2}+12xy+9y^{2}-\left(4^{2}x^{2}-\left(9y\right)^{2}\right)+\left(3x-2y\right)^{2}
Expand \left(4x\right)^{2}.
4x^{2}+12xy+9y^{2}-\left(16x^{2}-\left(9y\right)^{2}\right)+\left(3x-2y\right)^{2}
Calculate 4 to the power of 2 and get 16.
4x^{2}+12xy+9y^{2}-\left(16x^{2}-9^{2}y^{2}\right)+\left(3x-2y\right)^{2}
Expand \left(9y\right)^{2}.
4x^{2}+12xy+9y^{2}-\left(16x^{2}-81y^{2}\right)+\left(3x-2y\right)^{2}
Calculate 9 to the power of 2 and get 81.
4x^{2}+12xy+9y^{2}-16x^{2}+81y^{2}+\left(3x-2y\right)^{2}
To find the opposite of 16x^{2}-81y^{2}, find the opposite of each term.
-12x^{2}+12xy+9y^{2}+81y^{2}+\left(3x-2y\right)^{2}
Combine 4x^{2} and -16x^{2} to get -12x^{2}.
-12x^{2}+12xy+90y^{2}+\left(3x-2y\right)^{2}
Combine 9y^{2} and 81y^{2} to get 90y^{2}.
-12x^{2}+12xy+90y^{2}+9x^{2}-12xy+4y^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-2y\right)^{2}.
-3x^{2}+12xy+90y^{2}-12xy+4y^{2}
Combine -12x^{2} and 9x^{2} to get -3x^{2}.
-3x^{2}+90y^{2}+4y^{2}
Combine 12xy and -12xy to get 0.
-3x^{2}+94y^{2}
Combine 90y^{2} and 4y^{2} to get 94y^{2}.