Solve for a
a=-x-1+\frac{6}{x}
x\neq 0
Solve for x
x=\frac{\sqrt{a^{2}+2a+25}-a-1}{2}
x=\frac{-\sqrt{a^{2}+2a+25}-a-1}{2}
Graph
Share
Copied to clipboard
2x^{2}+x-3=x^{2}-ax+3
Use the distributive property to multiply 2x+3 by x-1 and combine like terms.
x^{2}-ax+3=2x^{2}+x-3
Swap sides so that all variable terms are on the left hand side.
-ax+3=2x^{2}+x-3-x^{2}
Subtract x^{2} from both sides.
-ax+3=x^{2}+x-3
Combine 2x^{2} and -x^{2} to get x^{2}.
-ax=x^{2}+x-3-3
Subtract 3 from both sides.
-ax=x^{2}+x-6
Subtract 3 from -3 to get -6.
\left(-x\right)a=x^{2}+x-6
The equation is in standard form.
\frac{\left(-x\right)a}{-x}=\frac{\left(x-2\right)\left(x+3\right)}{-x}
Divide both sides by -x.
a=\frac{\left(x-2\right)\left(x+3\right)}{-x}
Dividing by -x undoes the multiplication by -x.
a=-x-1+\frac{6}{x}
Divide \left(-2+x\right)\left(3+x\right) by -x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}