Solve for x
x=-7
x=4
Graph
Share
Copied to clipboard
2x^{3}-32x+3x^{2}-48+\left(x-4\right)\left(x+40\right)=2\left(x-4\right)\left(x^{2}-16\right)
Use the distributive property to multiply 2x+3 by x^{2}-16.
2x^{3}-32x+3x^{2}-48+x^{2}+36x-160=2\left(x-4\right)\left(x^{2}-16\right)
Use the distributive property to multiply x-4 by x+40 and combine like terms.
2x^{3}-32x+4x^{2}-48+36x-160=2\left(x-4\right)\left(x^{2}-16\right)
Combine 3x^{2} and x^{2} to get 4x^{2}.
2x^{3}+4x+4x^{2}-48-160=2\left(x-4\right)\left(x^{2}-16\right)
Combine -32x and 36x to get 4x.
2x^{3}+4x+4x^{2}-208=2\left(x-4\right)\left(x^{2}-16\right)
Subtract 160 from -48 to get -208.
2x^{3}+4x+4x^{2}-208=\left(2x-8\right)\left(x^{2}-16\right)
Use the distributive property to multiply 2 by x-4.
2x^{3}+4x+4x^{2}-208=2x^{3}-32x-8x^{2}+128
Use the distributive property to multiply 2x-8 by x^{2}-16.
2x^{3}+4x+4x^{2}-208-2x^{3}=-32x-8x^{2}+128
Subtract 2x^{3} from both sides.
4x+4x^{2}-208=-32x-8x^{2}+128
Combine 2x^{3} and -2x^{3} to get 0.
4x+4x^{2}-208+32x=-8x^{2}+128
Add 32x to both sides.
36x+4x^{2}-208=-8x^{2}+128
Combine 4x and 32x to get 36x.
36x+4x^{2}-208+8x^{2}=128
Add 8x^{2} to both sides.
36x+12x^{2}-208=128
Combine 4x^{2} and 8x^{2} to get 12x^{2}.
36x+12x^{2}-208-128=0
Subtract 128 from both sides.
36x+12x^{2}-336=0
Subtract 128 from -208 to get -336.
3x+x^{2}-28=0
Divide both sides by 12.
x^{2}+3x-28=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=3 ab=1\left(-28\right)=-28
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-28. To find a and b, set up a system to be solved.
-1,28 -2,14 -4,7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -28.
-1+28=27 -2+14=12 -4+7=3
Calculate the sum for each pair.
a=-4 b=7
The solution is the pair that gives sum 3.
\left(x^{2}-4x\right)+\left(7x-28\right)
Rewrite x^{2}+3x-28 as \left(x^{2}-4x\right)+\left(7x-28\right).
x\left(x-4\right)+7\left(x-4\right)
Factor out x in the first and 7 in the second group.
\left(x-4\right)\left(x+7\right)
Factor out common term x-4 by using distributive property.
x=4 x=-7
To find equation solutions, solve x-4=0 and x+7=0.
2x^{3}-32x+3x^{2}-48+\left(x-4\right)\left(x+40\right)=2\left(x-4\right)\left(x^{2}-16\right)
Use the distributive property to multiply 2x+3 by x^{2}-16.
2x^{3}-32x+3x^{2}-48+x^{2}+36x-160=2\left(x-4\right)\left(x^{2}-16\right)
Use the distributive property to multiply x-4 by x+40 and combine like terms.
2x^{3}-32x+4x^{2}-48+36x-160=2\left(x-4\right)\left(x^{2}-16\right)
Combine 3x^{2} and x^{2} to get 4x^{2}.
2x^{3}+4x+4x^{2}-48-160=2\left(x-4\right)\left(x^{2}-16\right)
Combine -32x and 36x to get 4x.
2x^{3}+4x+4x^{2}-208=2\left(x-4\right)\left(x^{2}-16\right)
Subtract 160 from -48 to get -208.
2x^{3}+4x+4x^{2}-208=\left(2x-8\right)\left(x^{2}-16\right)
Use the distributive property to multiply 2 by x-4.
2x^{3}+4x+4x^{2}-208=2x^{3}-32x-8x^{2}+128
Use the distributive property to multiply 2x-8 by x^{2}-16.
2x^{3}+4x+4x^{2}-208-2x^{3}=-32x-8x^{2}+128
Subtract 2x^{3} from both sides.
4x+4x^{2}-208=-32x-8x^{2}+128
Combine 2x^{3} and -2x^{3} to get 0.
4x+4x^{2}-208+32x=-8x^{2}+128
Add 32x to both sides.
36x+4x^{2}-208=-8x^{2}+128
Combine 4x and 32x to get 36x.
36x+4x^{2}-208+8x^{2}=128
Add 8x^{2} to both sides.
36x+12x^{2}-208=128
Combine 4x^{2} and 8x^{2} to get 12x^{2}.
36x+12x^{2}-208-128=0
Subtract 128 from both sides.
36x+12x^{2}-336=0
Subtract 128 from -208 to get -336.
12x^{2}+36x-336=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-36±\sqrt{36^{2}-4\times 12\left(-336\right)}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 36 for b, and -336 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-36±\sqrt{1296-4\times 12\left(-336\right)}}{2\times 12}
Square 36.
x=\frac{-36±\sqrt{1296-48\left(-336\right)}}{2\times 12}
Multiply -4 times 12.
x=\frac{-36±\sqrt{1296+16128}}{2\times 12}
Multiply -48 times -336.
x=\frac{-36±\sqrt{17424}}{2\times 12}
Add 1296 to 16128.
x=\frac{-36±132}{2\times 12}
Take the square root of 17424.
x=\frac{-36±132}{24}
Multiply 2 times 12.
x=\frac{96}{24}
Now solve the equation x=\frac{-36±132}{24} when ± is plus. Add -36 to 132.
x=4
Divide 96 by 24.
x=-\frac{168}{24}
Now solve the equation x=\frac{-36±132}{24} when ± is minus. Subtract 132 from -36.
x=-7
Divide -168 by 24.
x=4 x=-7
The equation is now solved.
2x^{3}-32x+3x^{2}-48+\left(x-4\right)\left(x+40\right)=2\left(x-4\right)\left(x^{2}-16\right)
Use the distributive property to multiply 2x+3 by x^{2}-16.
2x^{3}-32x+3x^{2}-48+x^{2}+36x-160=2\left(x-4\right)\left(x^{2}-16\right)
Use the distributive property to multiply x-4 by x+40 and combine like terms.
2x^{3}-32x+4x^{2}-48+36x-160=2\left(x-4\right)\left(x^{2}-16\right)
Combine 3x^{2} and x^{2} to get 4x^{2}.
2x^{3}+4x+4x^{2}-48-160=2\left(x-4\right)\left(x^{2}-16\right)
Combine -32x and 36x to get 4x.
2x^{3}+4x+4x^{2}-208=2\left(x-4\right)\left(x^{2}-16\right)
Subtract 160 from -48 to get -208.
2x^{3}+4x+4x^{2}-208=\left(2x-8\right)\left(x^{2}-16\right)
Use the distributive property to multiply 2 by x-4.
2x^{3}+4x+4x^{2}-208=2x^{3}-32x-8x^{2}+128
Use the distributive property to multiply 2x-8 by x^{2}-16.
2x^{3}+4x+4x^{2}-208-2x^{3}=-32x-8x^{2}+128
Subtract 2x^{3} from both sides.
4x+4x^{2}-208=-32x-8x^{2}+128
Combine 2x^{3} and -2x^{3} to get 0.
4x+4x^{2}-208+32x=-8x^{2}+128
Add 32x to both sides.
36x+4x^{2}-208=-8x^{2}+128
Combine 4x and 32x to get 36x.
36x+4x^{2}-208+8x^{2}=128
Add 8x^{2} to both sides.
36x+12x^{2}-208=128
Combine 4x^{2} and 8x^{2} to get 12x^{2}.
36x+12x^{2}=128+208
Add 208 to both sides.
36x+12x^{2}=336
Add 128 and 208 to get 336.
12x^{2}+36x=336
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{12x^{2}+36x}{12}=\frac{336}{12}
Divide both sides by 12.
x^{2}+\frac{36}{12}x=\frac{336}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}+3x=\frac{336}{12}
Divide 36 by 12.
x^{2}+3x=28
Divide 336 by 12.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=28+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=28+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{121}{4}
Add 28 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{121}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{11}{2} x+\frac{3}{2}=-\frac{11}{2}
Simplify.
x=4 x=-7
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}