Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2x\right)^{2}-3^{2}-4\left(x+9\right)\left(x-\frac{1}{4}\right)
Consider \left(2x+3\right)\left(2x-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}x^{2}-3^{2}-4\left(x+9\right)\left(x-\frac{1}{4}\right)
Expand \left(2x\right)^{2}.
4x^{2}-3^{2}-4\left(x+9\right)\left(x-\frac{1}{4}\right)
Calculate 2 to the power of 2 and get 4.
4x^{2}-9-4\left(x+9\right)\left(x-\frac{1}{4}\right)
Calculate 3 to the power of 2 and get 9.
4x^{2}-9+\left(-4x-36\right)\left(x-\frac{1}{4}\right)
Use the distributive property to multiply -4 by x+9.
4x^{2}-9-4x^{2}-4x\left(-\frac{1}{4}\right)-36x-36\left(-\frac{1}{4}\right)
Apply the distributive property by multiplying each term of -4x-36 by each term of x-\frac{1}{4}.
4x^{2}-9-4x^{2}+x-36x-36\left(-\frac{1}{4}\right)
Multiply -4 times -\frac{1}{4}.
4x^{2}-9-4x^{2}-35x-36\left(-\frac{1}{4}\right)
Combine x and -36x to get -35x.
4x^{2}-9-4x^{2}-35x+\frac{-36\left(-1\right)}{4}
Express -36\left(-\frac{1}{4}\right) as a single fraction.
4x^{2}-9-4x^{2}-35x+\frac{36}{4}
Multiply -36 and -1 to get 36.
4x^{2}-9-4x^{2}-35x+9
Divide 36 by 4 to get 9.
-9-35x+9
Combine 4x^{2} and -4x^{2} to get 0.
-35x
Add -9 and 9 to get 0.
\left(2x\right)^{2}-3^{2}-4\left(x+9\right)\left(x-\frac{1}{4}\right)
Consider \left(2x+3\right)\left(2x-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}x^{2}-3^{2}-4\left(x+9\right)\left(x-\frac{1}{4}\right)
Expand \left(2x\right)^{2}.
4x^{2}-3^{2}-4\left(x+9\right)\left(x-\frac{1}{4}\right)
Calculate 2 to the power of 2 and get 4.
4x^{2}-9-4\left(x+9\right)\left(x-\frac{1}{4}\right)
Calculate 3 to the power of 2 and get 9.
4x^{2}-9+\left(-4x-36\right)\left(x-\frac{1}{4}\right)
Use the distributive property to multiply -4 by x+9.
4x^{2}-9-4x^{2}-4x\left(-\frac{1}{4}\right)-36x-36\left(-\frac{1}{4}\right)
Apply the distributive property by multiplying each term of -4x-36 by each term of x-\frac{1}{4}.
4x^{2}-9-4x^{2}+x-36x-36\left(-\frac{1}{4}\right)
Multiply -4 times -\frac{1}{4}.
4x^{2}-9-4x^{2}-35x-36\left(-\frac{1}{4}\right)
Combine x and -36x to get -35x.
4x^{2}-9-4x^{2}-35x+\frac{-36\left(-1\right)}{4}
Express -36\left(-\frac{1}{4}\right) as a single fraction.
4x^{2}-9-4x^{2}-35x+\frac{36}{4}
Multiply -36 and -1 to get 36.
4x^{2}-9-4x^{2}-35x+9
Divide 36 by 4 to get 9.
-9-35x+9
Combine 4x^{2} and -4x^{2} to get 0.
-35x
Add -9 and 9 to get 0.