Evaluate
-35x
Expand
-35x
Graph
Quiz
Polynomial
5 problems similar to:
( 2 x + 3 ) ( 2 x - 3 ) - 4 ( x + 9 ) ( x - \frac { 1 } { 4 } )
Share
Copied to clipboard
\left(2x\right)^{2}-3^{2}-4\left(x+9\right)\left(x-\frac{1}{4}\right)
Consider \left(2x+3\right)\left(2x-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}x^{2}-3^{2}-4\left(x+9\right)\left(x-\frac{1}{4}\right)
Expand \left(2x\right)^{2}.
4x^{2}-3^{2}-4\left(x+9\right)\left(x-\frac{1}{4}\right)
Calculate 2 to the power of 2 and get 4.
4x^{2}-9-4\left(x+9\right)\left(x-\frac{1}{4}\right)
Calculate 3 to the power of 2 and get 9.
4x^{2}-9+\left(-4x-36\right)\left(x-\frac{1}{4}\right)
Use the distributive property to multiply -4 by x+9.
4x^{2}-9-4x^{2}-4x\left(-\frac{1}{4}\right)-36x-36\left(-\frac{1}{4}\right)
Apply the distributive property by multiplying each term of -4x-36 by each term of x-\frac{1}{4}.
4x^{2}-9-4x^{2}+x-36x-36\left(-\frac{1}{4}\right)
Multiply -4 times -\frac{1}{4}.
4x^{2}-9-4x^{2}-35x-36\left(-\frac{1}{4}\right)
Combine x and -36x to get -35x.
4x^{2}-9-4x^{2}-35x+\frac{-36\left(-1\right)}{4}
Express -36\left(-\frac{1}{4}\right) as a single fraction.
4x^{2}-9-4x^{2}-35x+\frac{36}{4}
Multiply -36 and -1 to get 36.
4x^{2}-9-4x^{2}-35x+9
Divide 36 by 4 to get 9.
-9-35x+9
Combine 4x^{2} and -4x^{2} to get 0.
-35x
Add -9 and 9 to get 0.
\left(2x\right)^{2}-3^{2}-4\left(x+9\right)\left(x-\frac{1}{4}\right)
Consider \left(2x+3\right)\left(2x-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}x^{2}-3^{2}-4\left(x+9\right)\left(x-\frac{1}{4}\right)
Expand \left(2x\right)^{2}.
4x^{2}-3^{2}-4\left(x+9\right)\left(x-\frac{1}{4}\right)
Calculate 2 to the power of 2 and get 4.
4x^{2}-9-4\left(x+9\right)\left(x-\frac{1}{4}\right)
Calculate 3 to the power of 2 and get 9.
4x^{2}-9+\left(-4x-36\right)\left(x-\frac{1}{4}\right)
Use the distributive property to multiply -4 by x+9.
4x^{2}-9-4x^{2}-4x\left(-\frac{1}{4}\right)-36x-36\left(-\frac{1}{4}\right)
Apply the distributive property by multiplying each term of -4x-36 by each term of x-\frac{1}{4}.
4x^{2}-9-4x^{2}+x-36x-36\left(-\frac{1}{4}\right)
Multiply -4 times -\frac{1}{4}.
4x^{2}-9-4x^{2}-35x-36\left(-\frac{1}{4}\right)
Combine x and -36x to get -35x.
4x^{2}-9-4x^{2}-35x+\frac{-36\left(-1\right)}{4}
Express -36\left(-\frac{1}{4}\right) as a single fraction.
4x^{2}-9-4x^{2}-35x+\frac{36}{4}
Multiply -36 and -1 to get 36.
4x^{2}-9-4x^{2}-35x+9
Divide 36 by 4 to get 9.
-9-35x+9
Combine 4x^{2} and -4x^{2} to get 0.
-35x
Add -9 and 9 to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}