Solve for x
x>\frac{15}{4}
Graph
Share
Copied to clipboard
\left(2x\right)^{2}-9<4\left(x-2\right)\left(x+3\right)
Consider \left(2x+3\right)\left(2x-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
2^{2}x^{2}-9<4\left(x-2\right)\left(x+3\right)
Expand \left(2x\right)^{2}.
4x^{2}-9<4\left(x-2\right)\left(x+3\right)
Calculate 2 to the power of 2 and get 4.
4x^{2}-9<\left(4x-8\right)\left(x+3\right)
Use the distributive property to multiply 4 by x-2.
4x^{2}-9<4x^{2}+4x-24
Use the distributive property to multiply 4x-8 by x+3 and combine like terms.
4x^{2}-9-4x^{2}<4x-24
Subtract 4x^{2} from both sides.
-9<4x-24
Combine 4x^{2} and -4x^{2} to get 0.
4x-24>-9
Swap sides so that all variable terms are on the left hand side. This changes the sign direction.
4x>-9+24
Add 24 to both sides.
4x>15
Add -9 and 24 to get 15.
x>\frac{15}{4}
Divide both sides by 4. Since 4 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}