Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+12x+9=\left(x-2\right)^{2}+5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
4x^{2}+12x+9=x^{2}-4x+4+5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
4x^{2}+12x+9=x^{2}-4x+9
Add 4 and 5 to get 9.
4x^{2}+12x+9-x^{2}=-4x+9
Subtract x^{2} from both sides.
3x^{2}+12x+9=-4x+9
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+12x+9+4x=9
Add 4x to both sides.
3x^{2}+16x+9=9
Combine 12x and 4x to get 16x.
3x^{2}+16x+9-9=0
Subtract 9 from both sides.
3x^{2}+16x=0
Subtract 9 from 9 to get 0.
x\left(3x+16\right)=0
Factor out x.
x=0 x=-\frac{16}{3}
To find equation solutions, solve x=0 and 3x+16=0.
4x^{2}+12x+9=\left(x-2\right)^{2}+5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
4x^{2}+12x+9=x^{2}-4x+4+5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
4x^{2}+12x+9=x^{2}-4x+9
Add 4 and 5 to get 9.
4x^{2}+12x+9-x^{2}=-4x+9
Subtract x^{2} from both sides.
3x^{2}+12x+9=-4x+9
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+12x+9+4x=9
Add 4x to both sides.
3x^{2}+16x+9=9
Combine 12x and 4x to get 16x.
3x^{2}+16x+9-9=0
Subtract 9 from both sides.
3x^{2}+16x=0
Subtract 9 from 9 to get 0.
x=\frac{-16±\sqrt{16^{2}}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 16 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±16}{2\times 3}
Take the square root of 16^{2}.
x=\frac{-16±16}{6}
Multiply 2 times 3.
x=\frac{0}{6}
Now solve the equation x=\frac{-16±16}{6} when ± is plus. Add -16 to 16.
x=0
Divide 0 by 6.
x=-\frac{32}{6}
Now solve the equation x=\frac{-16±16}{6} when ± is minus. Subtract 16 from -16.
x=-\frac{16}{3}
Reduce the fraction \frac{-32}{6} to lowest terms by extracting and canceling out 2.
x=0 x=-\frac{16}{3}
The equation is now solved.
4x^{2}+12x+9=\left(x-2\right)^{2}+5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
4x^{2}+12x+9=x^{2}-4x+4+5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
4x^{2}+12x+9=x^{2}-4x+9
Add 4 and 5 to get 9.
4x^{2}+12x+9-x^{2}=-4x+9
Subtract x^{2} from both sides.
3x^{2}+12x+9=-4x+9
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+12x+9+4x=9
Add 4x to both sides.
3x^{2}+16x+9=9
Combine 12x and 4x to get 16x.
3x^{2}+16x=9-9
Subtract 9 from both sides.
3x^{2}+16x=0
Subtract 9 from 9 to get 0.
\frac{3x^{2}+16x}{3}=\frac{0}{3}
Divide both sides by 3.
x^{2}+\frac{16}{3}x=\frac{0}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{16}{3}x=0
Divide 0 by 3.
x^{2}+\frac{16}{3}x+\left(\frac{8}{3}\right)^{2}=\left(\frac{8}{3}\right)^{2}
Divide \frac{16}{3}, the coefficient of the x term, by 2 to get \frac{8}{3}. Then add the square of \frac{8}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{16}{3}x+\frac{64}{9}=\frac{64}{9}
Square \frac{8}{3} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{8}{3}\right)^{2}=\frac{64}{9}
Factor x^{2}+\frac{16}{3}x+\frac{64}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{8}{3}\right)^{2}}=\sqrt{\frac{64}{9}}
Take the square root of both sides of the equation.
x+\frac{8}{3}=\frac{8}{3} x+\frac{8}{3}=-\frac{8}{3}
Simplify.
x=0 x=-\frac{16}{3}
Subtract \frac{8}{3} from both sides of the equation.