Solve for x
x = \frac{5 \sqrt{17} - 15}{4} \approx 1.403882032
x=\frac{-5\sqrt{17}-15}{4}\approx -8.903882032
Graph
Share
Copied to clipboard
4x^{2}+30x+50=100
Use the distributive property to multiply 2x+10 by 2x+5 and combine like terms.
4x^{2}+30x+50-100=0
Subtract 100 from both sides.
4x^{2}+30x-50=0
Subtract 100 from 50 to get -50.
x=\frac{-30±\sqrt{30^{2}-4\times 4\left(-50\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 30 for b, and -50 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\times 4\left(-50\right)}}{2\times 4}
Square 30.
x=\frac{-30±\sqrt{900-16\left(-50\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-30±\sqrt{900+800}}{2\times 4}
Multiply -16 times -50.
x=\frac{-30±\sqrt{1700}}{2\times 4}
Add 900 to 800.
x=\frac{-30±10\sqrt{17}}{2\times 4}
Take the square root of 1700.
x=\frac{-30±10\sqrt{17}}{8}
Multiply 2 times 4.
x=\frac{10\sqrt{17}-30}{8}
Now solve the equation x=\frac{-30±10\sqrt{17}}{8} when ± is plus. Add -30 to 10\sqrt{17}.
x=\frac{5\sqrt{17}-15}{4}
Divide -30+10\sqrt{17} by 8.
x=\frac{-10\sqrt{17}-30}{8}
Now solve the equation x=\frac{-30±10\sqrt{17}}{8} when ± is minus. Subtract 10\sqrt{17} from -30.
x=\frac{-5\sqrt{17}-15}{4}
Divide -30-10\sqrt{17} by 8.
x=\frac{5\sqrt{17}-15}{4} x=\frac{-5\sqrt{17}-15}{4}
The equation is now solved.
4x^{2}+30x+50=100
Use the distributive property to multiply 2x+10 by 2x+5 and combine like terms.
4x^{2}+30x=100-50
Subtract 50 from both sides.
4x^{2}+30x=50
Subtract 50 from 100 to get 50.
\frac{4x^{2}+30x}{4}=\frac{50}{4}
Divide both sides by 4.
x^{2}+\frac{30}{4}x=\frac{50}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{15}{2}x=\frac{50}{4}
Reduce the fraction \frac{30}{4} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{15}{2}x=\frac{25}{2}
Reduce the fraction \frac{50}{4} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{15}{2}x+\left(\frac{15}{4}\right)^{2}=\frac{25}{2}+\left(\frac{15}{4}\right)^{2}
Divide \frac{15}{2}, the coefficient of the x term, by 2 to get \frac{15}{4}. Then add the square of \frac{15}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{15}{2}x+\frac{225}{16}=\frac{25}{2}+\frac{225}{16}
Square \frac{15}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{15}{2}x+\frac{225}{16}=\frac{425}{16}
Add \frac{25}{2} to \frac{225}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{15}{4}\right)^{2}=\frac{425}{16}
Factor x^{2}+\frac{15}{2}x+\frac{225}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{4}\right)^{2}}=\sqrt{\frac{425}{16}}
Take the square root of both sides of the equation.
x+\frac{15}{4}=\frac{5\sqrt{17}}{4} x+\frac{15}{4}=-\frac{5\sqrt{17}}{4}
Simplify.
x=\frac{5\sqrt{17}-15}{4} x=\frac{-5\sqrt{17}-15}{4}
Subtract \frac{15}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}