Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-5x-3=114
Use the distributive property to multiply 2x+1 by x-3 and combine like terms.
2x^{2}-5x-3-114=0
Subtract 114 from both sides.
2x^{2}-5x-117=0
Subtract 114 from -3 to get -117.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-117\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -5 for b, and -117 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-117\right)}}{2\times 2}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-8\left(-117\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-5\right)±\sqrt{25+936}}{2\times 2}
Multiply -8 times -117.
x=\frac{-\left(-5\right)±\sqrt{961}}{2\times 2}
Add 25 to 936.
x=\frac{-\left(-5\right)±31}{2\times 2}
Take the square root of 961.
x=\frac{5±31}{2\times 2}
The opposite of -5 is 5.
x=\frac{5±31}{4}
Multiply 2 times 2.
x=\frac{36}{4}
Now solve the equation x=\frac{5±31}{4} when ± is plus. Add 5 to 31.
x=9
Divide 36 by 4.
x=-\frac{26}{4}
Now solve the equation x=\frac{5±31}{4} when ± is minus. Subtract 31 from 5.
x=-\frac{13}{2}
Reduce the fraction \frac{-26}{4} to lowest terms by extracting and canceling out 2.
x=9 x=-\frac{13}{2}
The equation is now solved.
2x^{2}-5x-3=114
Use the distributive property to multiply 2x+1 by x-3 and combine like terms.
2x^{2}-5x=114+3
Add 3 to both sides.
2x^{2}-5x=117
Add 114 and 3 to get 117.
\frac{2x^{2}-5x}{2}=\frac{117}{2}
Divide both sides by 2.
x^{2}-\frac{5}{2}x=\frac{117}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=\frac{117}{2}+\left(-\frac{5}{4}\right)^{2}
Divide -\frac{5}{2}, the coefficient of the x term, by 2 to get -\frac{5}{4}. Then add the square of -\frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{117}{2}+\frac{25}{16}
Square -\frac{5}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{961}{16}
Add \frac{117}{2} to \frac{25}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{4}\right)^{2}=\frac{961}{16}
Factor x^{2}-\frac{5}{2}x+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{961}{16}}
Take the square root of both sides of the equation.
x-\frac{5}{4}=\frac{31}{4} x-\frac{5}{4}=-\frac{31}{4}
Simplify.
x=9 x=-\frac{13}{2}
Add \frac{5}{4} to both sides of the equation.