Evaluate
-6x^{2}+x-7
Expand
-6x^{2}+x-7
Graph
Share
Copied to clipboard
2x^{2}-x-1-\left(2x+1\right)^{2}-\left(2x+1\right)\left(2x-1\right)+6\left(x-1\right)
Use the distributive property to multiply 2x+1 by x-1 and combine like terms.
2x^{2}-x-1-\left(4x^{2}+4x+1\right)-\left(2x+1\right)\left(2x-1\right)+6\left(x-1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
2x^{2}-x-1-4x^{2}-4x-1-\left(2x+1\right)\left(2x-1\right)+6\left(x-1\right)
To find the opposite of 4x^{2}+4x+1, find the opposite of each term.
-2x^{2}-x-1-4x-1-\left(2x+1\right)\left(2x-1\right)+6\left(x-1\right)
Combine 2x^{2} and -4x^{2} to get -2x^{2}.
-2x^{2}-5x-1-1-\left(2x+1\right)\left(2x-1\right)+6\left(x-1\right)
Combine -x and -4x to get -5x.
-2x^{2}-5x-2-\left(2x+1\right)\left(2x-1\right)+6\left(x-1\right)
Subtract 1 from -1 to get -2.
-2x^{2}-5x-2-\left(\left(2x\right)^{2}-1\right)+6\left(x-1\right)
Consider \left(2x+1\right)\left(2x-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
-2x^{2}-5x-2-\left(2^{2}x^{2}-1\right)+6\left(x-1\right)
Expand \left(2x\right)^{2}.
-2x^{2}-5x-2-\left(4x^{2}-1\right)+6\left(x-1\right)
Calculate 2 to the power of 2 and get 4.
-2x^{2}-5x-2-4x^{2}+1+6\left(x-1\right)
To find the opposite of 4x^{2}-1, find the opposite of each term.
-6x^{2}-5x-2+1+6\left(x-1\right)
Combine -2x^{2} and -4x^{2} to get -6x^{2}.
-6x^{2}-5x-1+6\left(x-1\right)
Add -2 and 1 to get -1.
-6x^{2}-5x-1+6x-6
Use the distributive property to multiply 6 by x-1.
-6x^{2}+x-1-6
Combine -5x and 6x to get x.
-6x^{2}+x-7
Subtract 6 from -1 to get -7.
2x^{2}-x-1-\left(2x+1\right)^{2}-\left(2x+1\right)\left(2x-1\right)+6\left(x-1\right)
Use the distributive property to multiply 2x+1 by x-1 and combine like terms.
2x^{2}-x-1-\left(4x^{2}+4x+1\right)-\left(2x+1\right)\left(2x-1\right)+6\left(x-1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
2x^{2}-x-1-4x^{2}-4x-1-\left(2x+1\right)\left(2x-1\right)+6\left(x-1\right)
To find the opposite of 4x^{2}+4x+1, find the opposite of each term.
-2x^{2}-x-1-4x-1-\left(2x+1\right)\left(2x-1\right)+6\left(x-1\right)
Combine 2x^{2} and -4x^{2} to get -2x^{2}.
-2x^{2}-5x-1-1-\left(2x+1\right)\left(2x-1\right)+6\left(x-1\right)
Combine -x and -4x to get -5x.
-2x^{2}-5x-2-\left(2x+1\right)\left(2x-1\right)+6\left(x-1\right)
Subtract 1 from -1 to get -2.
-2x^{2}-5x-2-\left(\left(2x\right)^{2}-1\right)+6\left(x-1\right)
Consider \left(2x+1\right)\left(2x-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
-2x^{2}-5x-2-\left(2^{2}x^{2}-1\right)+6\left(x-1\right)
Expand \left(2x\right)^{2}.
-2x^{2}-5x-2-\left(4x^{2}-1\right)+6\left(x-1\right)
Calculate 2 to the power of 2 and get 4.
-2x^{2}-5x-2-4x^{2}+1+6\left(x-1\right)
To find the opposite of 4x^{2}-1, find the opposite of each term.
-6x^{2}-5x-2+1+6\left(x-1\right)
Combine -2x^{2} and -4x^{2} to get -6x^{2}.
-6x^{2}-5x-1+6\left(x-1\right)
Add -2 and 1 to get -1.
-6x^{2}-5x-1+6x-6
Use the distributive property to multiply 6 by x-1.
-6x^{2}+x-1-6
Combine -5x and 6x to get x.
-6x^{2}+x-7
Subtract 6 from -1 to get -7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}