Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-x-1-\left(2x+1\right)^{2}-\left(2x+1\right)\left(2x-1\right)+6\left(x-1\right)
Use the distributive property to multiply 2x+1 by x-1 and combine like terms.
2x^{2}-x-1-\left(4x^{2}+4x+1\right)-\left(2x+1\right)\left(2x-1\right)+6\left(x-1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
2x^{2}-x-1-4x^{2}-4x-1-\left(2x+1\right)\left(2x-1\right)+6\left(x-1\right)
To find the opposite of 4x^{2}+4x+1, find the opposite of each term.
-2x^{2}-x-1-4x-1-\left(2x+1\right)\left(2x-1\right)+6\left(x-1\right)
Combine 2x^{2} and -4x^{2} to get -2x^{2}.
-2x^{2}-5x-1-1-\left(2x+1\right)\left(2x-1\right)+6\left(x-1\right)
Combine -x and -4x to get -5x.
-2x^{2}-5x-2-\left(2x+1\right)\left(2x-1\right)+6\left(x-1\right)
Subtract 1 from -1 to get -2.
-2x^{2}-5x-2-\left(\left(2x\right)^{2}-1\right)+6\left(x-1\right)
Consider \left(2x+1\right)\left(2x-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
-2x^{2}-5x-2-\left(2^{2}x^{2}-1\right)+6\left(x-1\right)
Expand \left(2x\right)^{2}.
-2x^{2}-5x-2-\left(4x^{2}-1\right)+6\left(x-1\right)
Calculate 2 to the power of 2 and get 4.
-2x^{2}-5x-2-4x^{2}+1+6\left(x-1\right)
To find the opposite of 4x^{2}-1, find the opposite of each term.
-6x^{2}-5x-2+1+6\left(x-1\right)
Combine -2x^{2} and -4x^{2} to get -6x^{2}.
-6x^{2}-5x-1+6\left(x-1\right)
Add -2 and 1 to get -1.
-6x^{2}-5x-1+6x-6
Use the distributive property to multiply 6 by x-1.
-6x^{2}+x-1-6
Combine -5x and 6x to get x.
-6x^{2}+x-7
Subtract 6 from -1 to get -7.
2x^{2}-x-1-\left(2x+1\right)^{2}-\left(2x+1\right)\left(2x-1\right)+6\left(x-1\right)
Use the distributive property to multiply 2x+1 by x-1 and combine like terms.
2x^{2}-x-1-\left(4x^{2}+4x+1\right)-\left(2x+1\right)\left(2x-1\right)+6\left(x-1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
2x^{2}-x-1-4x^{2}-4x-1-\left(2x+1\right)\left(2x-1\right)+6\left(x-1\right)
To find the opposite of 4x^{2}+4x+1, find the opposite of each term.
-2x^{2}-x-1-4x-1-\left(2x+1\right)\left(2x-1\right)+6\left(x-1\right)
Combine 2x^{2} and -4x^{2} to get -2x^{2}.
-2x^{2}-5x-1-1-\left(2x+1\right)\left(2x-1\right)+6\left(x-1\right)
Combine -x and -4x to get -5x.
-2x^{2}-5x-2-\left(2x+1\right)\left(2x-1\right)+6\left(x-1\right)
Subtract 1 from -1 to get -2.
-2x^{2}-5x-2-\left(\left(2x\right)^{2}-1\right)+6\left(x-1\right)
Consider \left(2x+1\right)\left(2x-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
-2x^{2}-5x-2-\left(2^{2}x^{2}-1\right)+6\left(x-1\right)
Expand \left(2x\right)^{2}.
-2x^{2}-5x-2-\left(4x^{2}-1\right)+6\left(x-1\right)
Calculate 2 to the power of 2 and get 4.
-2x^{2}-5x-2-4x^{2}+1+6\left(x-1\right)
To find the opposite of 4x^{2}-1, find the opposite of each term.
-6x^{2}-5x-2+1+6\left(x-1\right)
Combine -2x^{2} and -4x^{2} to get -6x^{2}.
-6x^{2}-5x-1+6\left(x-1\right)
Add -2 and 1 to get -1.
-6x^{2}-5x-1+6x-6
Use the distributive property to multiply 6 by x-1.
-6x^{2}+x-1-6
Combine -5x and 6x to get x.
-6x^{2}+x-7
Subtract 6 from -1 to get -7.