Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+11x+5=-3
Use the distributive property to multiply 2x+1 by x+5 and combine like terms.
2x^{2}+11x+5+3=0
Add 3 to both sides.
2x^{2}+11x+8=0
Add 5 and 3 to get 8.
x=\frac{-11±\sqrt{11^{2}-4\times 2\times 8}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 11 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\times 2\times 8}}{2\times 2}
Square 11.
x=\frac{-11±\sqrt{121-8\times 8}}{2\times 2}
Multiply -4 times 2.
x=\frac{-11±\sqrt{121-64}}{2\times 2}
Multiply -8 times 8.
x=\frac{-11±\sqrt{57}}{2\times 2}
Add 121 to -64.
x=\frac{-11±\sqrt{57}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{57}-11}{4}
Now solve the equation x=\frac{-11±\sqrt{57}}{4} when ± is plus. Add -11 to \sqrt{57}.
x=\frac{-\sqrt{57}-11}{4}
Now solve the equation x=\frac{-11±\sqrt{57}}{4} when ± is minus. Subtract \sqrt{57} from -11.
x=\frac{\sqrt{57}-11}{4} x=\frac{-\sqrt{57}-11}{4}
The equation is now solved.
2x^{2}+11x+5=-3
Use the distributive property to multiply 2x+1 by x+5 and combine like terms.
2x^{2}+11x=-3-5
Subtract 5 from both sides.
2x^{2}+11x=-8
Subtract 5 from -3 to get -8.
\frac{2x^{2}+11x}{2}=-\frac{8}{2}
Divide both sides by 2.
x^{2}+\frac{11}{2}x=-\frac{8}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{11}{2}x=-4
Divide -8 by 2.
x^{2}+\frac{11}{2}x+\left(\frac{11}{4}\right)^{2}=-4+\left(\frac{11}{4}\right)^{2}
Divide \frac{11}{2}, the coefficient of the x term, by 2 to get \frac{11}{4}. Then add the square of \frac{11}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{11}{2}x+\frac{121}{16}=-4+\frac{121}{16}
Square \frac{11}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{11}{2}x+\frac{121}{16}=\frac{57}{16}
Add -4 to \frac{121}{16}.
\left(x+\frac{11}{4}\right)^{2}=\frac{57}{16}
Factor x^{2}+\frac{11}{2}x+\frac{121}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{4}\right)^{2}}=\sqrt{\frac{57}{16}}
Take the square root of both sides of the equation.
x+\frac{11}{4}=\frac{\sqrt{57}}{4} x+\frac{11}{4}=-\frac{\sqrt{57}}{4}
Simplify.
x=\frac{\sqrt{57}-11}{4} x=\frac{-\sqrt{57}-11}{4}
Subtract \frac{11}{4} from both sides of the equation.