Solve for x
x=-\frac{1}{3}\approx -0.333333333
x=-1
Graph
Share
Copied to clipboard
4x^{2}+4x+1-x^{2}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
3x^{2}+4x+1=0
Combine 4x^{2} and -x^{2} to get 3x^{2}.
a+b=4 ab=3\times 1=3
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx+1. To find a and b, set up a system to be solved.
a=1 b=3
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. The only such pair is the system solution.
\left(3x^{2}+x\right)+\left(3x+1\right)
Rewrite 3x^{2}+4x+1 as \left(3x^{2}+x\right)+\left(3x+1\right).
x\left(3x+1\right)+3x+1
Factor out x in 3x^{2}+x.
\left(3x+1\right)\left(x+1\right)
Factor out common term 3x+1 by using distributive property.
x=-\frac{1}{3} x=-1
To find equation solutions, solve 3x+1=0 and x+1=0.
4x^{2}+4x+1-x^{2}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
3x^{2}+4x+1=0
Combine 4x^{2} and -x^{2} to get 3x^{2}.
x=\frac{-4±\sqrt{4^{2}-4\times 3}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 4 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 3}}{2\times 3}
Square 4.
x=\frac{-4±\sqrt{16-12}}{2\times 3}
Multiply -4 times 3.
x=\frac{-4±\sqrt{4}}{2\times 3}
Add 16 to -12.
x=\frac{-4±2}{2\times 3}
Take the square root of 4.
x=\frac{-4±2}{6}
Multiply 2 times 3.
x=-\frac{2}{6}
Now solve the equation x=\frac{-4±2}{6} when ± is plus. Add -4 to 2.
x=-\frac{1}{3}
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
x=-\frac{6}{6}
Now solve the equation x=\frac{-4±2}{6} when ± is minus. Subtract 2 from -4.
x=-1
Divide -6 by 6.
x=-\frac{1}{3} x=-1
The equation is now solved.
4x^{2}+4x+1-x^{2}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
3x^{2}+4x+1=0
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+4x=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\frac{3x^{2}+4x}{3}=-\frac{1}{3}
Divide both sides by 3.
x^{2}+\frac{4}{3}x=-\frac{1}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=-\frac{1}{3}+\left(\frac{2}{3}\right)^{2}
Divide \frac{4}{3}, the coefficient of the x term, by 2 to get \frac{2}{3}. Then add the square of \frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{4}{3}x+\frac{4}{9}=-\frac{1}{3}+\frac{4}{9}
Square \frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{1}{9}
Add -\frac{1}{3} to \frac{4}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{2}{3}\right)^{2}=\frac{1}{9}
Factor x^{2}+\frac{4}{3}x+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Take the square root of both sides of the equation.
x+\frac{2}{3}=\frac{1}{3} x+\frac{2}{3}=-\frac{1}{3}
Simplify.
x=-\frac{1}{3} x=-1
Subtract \frac{2}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}