Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+4x+1-\left(x+2\right)^{2}=9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1-\left(x^{2}+4x+4\right)=9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
4x^{2}+4x+1-x^{2}-4x-4=9
To find the opposite of x^{2}+4x+4, find the opposite of each term.
3x^{2}+4x+1-4x-4=9
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+1-4=9
Combine 4x and -4x to get 0.
3x^{2}-3=9
Subtract 4 from 1 to get -3.
3x^{2}-3-9=0
Subtract 9 from both sides.
3x^{2}-12=0
Subtract 9 from -3 to get -12.
x^{2}-4=0
Divide both sides by 3.
\left(x-2\right)\left(x+2\right)=0
Consider x^{2}-4. Rewrite x^{2}-4 as x^{2}-2^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=2 x=-2
To find equation solutions, solve x-2=0 and x+2=0.
4x^{2}+4x+1-\left(x+2\right)^{2}=9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1-\left(x^{2}+4x+4\right)=9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
4x^{2}+4x+1-x^{2}-4x-4=9
To find the opposite of x^{2}+4x+4, find the opposite of each term.
3x^{2}+4x+1-4x-4=9
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+1-4=9
Combine 4x and -4x to get 0.
3x^{2}-3=9
Subtract 4 from 1 to get -3.
3x^{2}=9+3
Add 3 to both sides.
3x^{2}=12
Add 9 and 3 to get 12.
x^{2}=\frac{12}{3}
Divide both sides by 3.
x^{2}=4
Divide 12 by 3 to get 4.
x=2 x=-2
Take the square root of both sides of the equation.
4x^{2}+4x+1-\left(x+2\right)^{2}=9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1-\left(x^{2}+4x+4\right)=9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
4x^{2}+4x+1-x^{2}-4x-4=9
To find the opposite of x^{2}+4x+4, find the opposite of each term.
3x^{2}+4x+1-4x-4=9
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+1-4=9
Combine 4x and -4x to get 0.
3x^{2}-3=9
Subtract 4 from 1 to get -3.
3x^{2}-3-9=0
Subtract 9 from both sides.
3x^{2}-12=0
Subtract 9 from -3 to get -12.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-12\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 0 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-12\right)}}{2\times 3}
Square 0.
x=\frac{0±\sqrt{-12\left(-12\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{0±\sqrt{144}}{2\times 3}
Multiply -12 times -12.
x=\frac{0±12}{2\times 3}
Take the square root of 144.
x=\frac{0±12}{6}
Multiply 2 times 3.
x=2
Now solve the equation x=\frac{0±12}{6} when ± is plus. Divide 12 by 6.
x=-2
Now solve the equation x=\frac{0±12}{6} when ± is minus. Divide -12 by 6.
x=2 x=-2
The equation is now solved.