Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+4x+1=4\left(2x+1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1=4\left(4x^{2}+4x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1=16x^{2}+16x+4
Use the distributive property to multiply 4 by 4x^{2}+4x+1.
4x^{2}+4x+1-16x^{2}=16x+4
Subtract 16x^{2} from both sides.
-12x^{2}+4x+1=16x+4
Combine 4x^{2} and -16x^{2} to get -12x^{2}.
-12x^{2}+4x+1-16x=4
Subtract 16x from both sides.
-12x^{2}-12x+1=4
Combine 4x and -16x to get -12x.
-12x^{2}-12x+1-4=0
Subtract 4 from both sides.
-12x^{2}-12x-3=0
Subtract 4 from 1 to get -3.
-4x^{2}-4x-1=0
Divide both sides by 3.
a+b=-4 ab=-4\left(-1\right)=4
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -4x^{2}+ax+bx-1. To find a and b, set up a system to be solved.
-1,-4 -2,-2
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 4.
-1-4=-5 -2-2=-4
Calculate the sum for each pair.
a=-2 b=-2
The solution is the pair that gives sum -4.
\left(-4x^{2}-2x\right)+\left(-2x-1\right)
Rewrite -4x^{2}-4x-1 as \left(-4x^{2}-2x\right)+\left(-2x-1\right).
2x\left(-2x-1\right)-2x-1
Factor out 2x in -4x^{2}-2x.
\left(-2x-1\right)\left(2x+1\right)
Factor out common term -2x-1 by using distributive property.
x=-\frac{1}{2} x=-\frac{1}{2}
To find equation solutions, solve -2x-1=0 and 2x+1=0.
4x^{2}+4x+1=4\left(2x+1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1=4\left(4x^{2}+4x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1=16x^{2}+16x+4
Use the distributive property to multiply 4 by 4x^{2}+4x+1.
4x^{2}+4x+1-16x^{2}=16x+4
Subtract 16x^{2} from both sides.
-12x^{2}+4x+1=16x+4
Combine 4x^{2} and -16x^{2} to get -12x^{2}.
-12x^{2}+4x+1-16x=4
Subtract 16x from both sides.
-12x^{2}-12x+1=4
Combine 4x and -16x to get -12x.
-12x^{2}-12x+1-4=0
Subtract 4 from both sides.
-12x^{2}-12x-3=0
Subtract 4 from 1 to get -3.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-12\right)\left(-3\right)}}{2\left(-12\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -12 for a, -12 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-12\right)\left(-3\right)}}{2\left(-12\right)}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144+48\left(-3\right)}}{2\left(-12\right)}
Multiply -4 times -12.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\left(-12\right)}
Multiply 48 times -3.
x=\frac{-\left(-12\right)±\sqrt{0}}{2\left(-12\right)}
Add 144 to -144.
x=-\frac{-12}{2\left(-12\right)}
Take the square root of 0.
x=\frac{12}{2\left(-12\right)}
The opposite of -12 is 12.
x=\frac{12}{-24}
Multiply 2 times -12.
x=-\frac{1}{2}
Reduce the fraction \frac{12}{-24} to lowest terms by extracting and canceling out 12.
4x^{2}+4x+1=4\left(2x+1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1=4\left(4x^{2}+4x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1=16x^{2}+16x+4
Use the distributive property to multiply 4 by 4x^{2}+4x+1.
4x^{2}+4x+1-16x^{2}=16x+4
Subtract 16x^{2} from both sides.
-12x^{2}+4x+1=16x+4
Combine 4x^{2} and -16x^{2} to get -12x^{2}.
-12x^{2}+4x+1-16x=4
Subtract 16x from both sides.
-12x^{2}-12x+1=4
Combine 4x and -16x to get -12x.
-12x^{2}-12x=4-1
Subtract 1 from both sides.
-12x^{2}-12x=3
Subtract 1 from 4 to get 3.
\frac{-12x^{2}-12x}{-12}=\frac{3}{-12}
Divide both sides by -12.
x^{2}+\left(-\frac{12}{-12}\right)x=\frac{3}{-12}
Dividing by -12 undoes the multiplication by -12.
x^{2}+x=\frac{3}{-12}
Divide -12 by -12.
x^{2}+x=-\frac{1}{4}
Reduce the fraction \frac{3}{-12} to lowest terms by extracting and canceling out 3.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-\frac{1}{4}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=\frac{-1+1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=0
Add -\frac{1}{4} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{2}\right)^{2}=0
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x+\frac{1}{2}=0 x+\frac{1}{2}=0
Simplify.
x=-\frac{1}{2} x=-\frac{1}{2}
Subtract \frac{1}{2} from both sides of the equation.
x=-\frac{1}{2}
The equation is now solved. Solutions are the same.