Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+4x+1=3-x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1-3=-x
Subtract 3 from both sides.
4x^{2}+4x-2=-x
Subtract 3 from 1 to get -2.
4x^{2}+4x-2+x=0
Add x to both sides.
4x^{2}+5x-2=0
Combine 4x and x to get 5x.
x=\frac{-5±\sqrt{5^{2}-4\times 4\left(-2\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 5 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 4\left(-2\right)}}{2\times 4}
Square 5.
x=\frac{-5±\sqrt{25-16\left(-2\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-5±\sqrt{25+32}}{2\times 4}
Multiply -16 times -2.
x=\frac{-5±\sqrt{57}}{2\times 4}
Add 25 to 32.
x=\frac{-5±\sqrt{57}}{8}
Multiply 2 times 4.
x=\frac{\sqrt{57}-5}{8}
Now solve the equation x=\frac{-5±\sqrt{57}}{8} when ± is plus. Add -5 to \sqrt{57}.
x=\frac{-\sqrt{57}-5}{8}
Now solve the equation x=\frac{-5±\sqrt{57}}{8} when ± is minus. Subtract \sqrt{57} from -5.
x=\frac{\sqrt{57}-5}{8} x=\frac{-\sqrt{57}-5}{8}
The equation is now solved.
4x^{2}+4x+1=3-x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1+x=3
Add x to both sides.
4x^{2}+5x+1=3
Combine 4x and x to get 5x.
4x^{2}+5x=3-1
Subtract 1 from both sides.
4x^{2}+5x=2
Subtract 1 from 3 to get 2.
\frac{4x^{2}+5x}{4}=\frac{2}{4}
Divide both sides by 4.
x^{2}+\frac{5}{4}x=\frac{2}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{5}{4}x=\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{5}{4}x+\left(\frac{5}{8}\right)^{2}=\frac{1}{2}+\left(\frac{5}{8}\right)^{2}
Divide \frac{5}{4}, the coefficient of the x term, by 2 to get \frac{5}{8}. Then add the square of \frac{5}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{4}x+\frac{25}{64}=\frac{1}{2}+\frac{25}{64}
Square \frac{5}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{4}x+\frac{25}{64}=\frac{57}{64}
Add \frac{1}{2} to \frac{25}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{8}\right)^{2}=\frac{57}{64}
Factor x^{2}+\frac{5}{4}x+\frac{25}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{8}\right)^{2}}=\sqrt{\frac{57}{64}}
Take the square root of both sides of the equation.
x+\frac{5}{8}=\frac{\sqrt{57}}{8} x+\frac{5}{8}=-\frac{\sqrt{57}}{8}
Simplify.
x=\frac{\sqrt{57}-5}{8} x=\frac{-\sqrt{57}-5}{8}
Subtract \frac{5}{8} from both sides of the equation.