Solve for x
x=5\sqrt{3}+7\approx 15.660254038
x=7-5\sqrt{3}\approx -1.660254038
Graph
Share
Copied to clipboard
4x^{2}+4x+1=3\left(x+3\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1=3\left(x^{2}+6x+9\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
4x^{2}+4x+1=3x^{2}+18x+27
Use the distributive property to multiply 3 by x^{2}+6x+9.
4x^{2}+4x+1-3x^{2}=18x+27
Subtract 3x^{2} from both sides.
x^{2}+4x+1=18x+27
Combine 4x^{2} and -3x^{2} to get x^{2}.
x^{2}+4x+1-18x=27
Subtract 18x from both sides.
x^{2}-14x+1=27
Combine 4x and -18x to get -14x.
x^{2}-14x+1-27=0
Subtract 27 from both sides.
x^{2}-14x-26=0
Subtract 27 from 1 to get -26.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\left(-26\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -14 for b, and -26 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\left(-26\right)}}{2}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196+104}}{2}
Multiply -4 times -26.
x=\frac{-\left(-14\right)±\sqrt{300}}{2}
Add 196 to 104.
x=\frac{-\left(-14\right)±10\sqrt{3}}{2}
Take the square root of 300.
x=\frac{14±10\sqrt{3}}{2}
The opposite of -14 is 14.
x=\frac{10\sqrt{3}+14}{2}
Now solve the equation x=\frac{14±10\sqrt{3}}{2} when ± is plus. Add 14 to 10\sqrt{3}.
x=5\sqrt{3}+7
Divide 14+10\sqrt{3} by 2.
x=\frac{14-10\sqrt{3}}{2}
Now solve the equation x=\frac{14±10\sqrt{3}}{2} when ± is minus. Subtract 10\sqrt{3} from 14.
x=7-5\sqrt{3}
Divide 14-10\sqrt{3} by 2.
x=5\sqrt{3}+7 x=7-5\sqrt{3}
The equation is now solved.
4x^{2}+4x+1=3\left(x+3\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1=3\left(x^{2}+6x+9\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
4x^{2}+4x+1=3x^{2}+18x+27
Use the distributive property to multiply 3 by x^{2}+6x+9.
4x^{2}+4x+1-3x^{2}=18x+27
Subtract 3x^{2} from both sides.
x^{2}+4x+1=18x+27
Combine 4x^{2} and -3x^{2} to get x^{2}.
x^{2}+4x+1-18x=27
Subtract 18x from both sides.
x^{2}-14x+1=27
Combine 4x and -18x to get -14x.
x^{2}-14x=27-1
Subtract 1 from both sides.
x^{2}-14x=26
Subtract 1 from 27 to get 26.
x^{2}-14x+\left(-7\right)^{2}=26+\left(-7\right)^{2}
Divide -14, the coefficient of the x term, by 2 to get -7. Then add the square of -7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-14x+49=26+49
Square -7.
x^{2}-14x+49=75
Add 26 to 49.
\left(x-7\right)^{2}=75
Factor x^{2}-14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-7\right)^{2}}=\sqrt{75}
Take the square root of both sides of the equation.
x-7=5\sqrt{3} x-7=-5\sqrt{3}
Simplify.
x=5\sqrt{3}+7 x=7-5\sqrt{3}
Add 7 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}