Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+4x+1=3\left(x+1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1=3\left(x^{2}+2x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
4x^{2}+4x+1=3x^{2}+6x+3
Use the distributive property to multiply 3 by x^{2}+2x+1.
4x^{2}+4x+1-3x^{2}=6x+3
Subtract 3x^{2} from both sides.
x^{2}+4x+1=6x+3
Combine 4x^{2} and -3x^{2} to get x^{2}.
x^{2}+4x+1-6x=3
Subtract 6x from both sides.
x^{2}-2x+1=3
Combine 4x and -6x to get -2x.
x^{2}-2x+1-3=0
Subtract 3 from both sides.
x^{2}-2x-2=0
Subtract 3 from 1 to get -2.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-2\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-2\right)}}{2}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+8}}{2}
Multiply -4 times -2.
x=\frac{-\left(-2\right)±\sqrt{12}}{2}
Add 4 to 8.
x=\frac{-\left(-2\right)±2\sqrt{3}}{2}
Take the square root of 12.
x=\frac{2±2\sqrt{3}}{2}
The opposite of -2 is 2.
x=\frac{2\sqrt{3}+2}{2}
Now solve the equation x=\frac{2±2\sqrt{3}}{2} when ± is plus. Add 2 to 2\sqrt{3}.
x=\sqrt{3}+1
Divide 2+2\sqrt{3} by 2.
x=\frac{2-2\sqrt{3}}{2}
Now solve the equation x=\frac{2±2\sqrt{3}}{2} when ± is minus. Subtract 2\sqrt{3} from 2.
x=1-\sqrt{3}
Divide 2-2\sqrt{3} by 2.
x=\sqrt{3}+1 x=1-\sqrt{3}
The equation is now solved.
4x^{2}+4x+1=3\left(x+1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1=3\left(x^{2}+2x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
4x^{2}+4x+1=3x^{2}+6x+3
Use the distributive property to multiply 3 by x^{2}+2x+1.
4x^{2}+4x+1-3x^{2}=6x+3
Subtract 3x^{2} from both sides.
x^{2}+4x+1=6x+3
Combine 4x^{2} and -3x^{2} to get x^{2}.
x^{2}+4x+1-6x=3
Subtract 6x from both sides.
x^{2}-2x+1=3
Combine 4x and -6x to get -2x.
\left(x-1\right)^{2}=3
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{3}
Take the square root of both sides of the equation.
x-1=\sqrt{3} x-1=-\sqrt{3}
Simplify.
x=\sqrt{3}+1 x=1-\sqrt{3}
Add 1 to both sides of the equation.