Solve for x (complex solution)
x=-1+\frac{1}{2}i=-1+0.5i
x=-1-\frac{1}{2}i=-1-0.5i
Graph
Share
Copied to clipboard
4x^{2}+4x+1+\left(2x+3\right)^{2}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1+4x^{2}+12x+9=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
8x^{2}+4x+1+12x+9=0
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
8x^{2}+16x+1+9=0
Combine 4x and 12x to get 16x.
8x^{2}+16x+10=0
Add 1 and 9 to get 10.
x=\frac{-16±\sqrt{16^{2}-4\times 8\times 10}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 16 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 8\times 10}}{2\times 8}
Square 16.
x=\frac{-16±\sqrt{256-32\times 10}}{2\times 8}
Multiply -4 times 8.
x=\frac{-16±\sqrt{256-320}}{2\times 8}
Multiply -32 times 10.
x=\frac{-16±\sqrt{-64}}{2\times 8}
Add 256 to -320.
x=\frac{-16±8i}{2\times 8}
Take the square root of -64.
x=\frac{-16±8i}{16}
Multiply 2 times 8.
x=\frac{-16+8i}{16}
Now solve the equation x=\frac{-16±8i}{16} when ± is plus. Add -16 to 8i.
x=-1+\frac{1}{2}i
Divide -16+8i by 16.
x=\frac{-16-8i}{16}
Now solve the equation x=\frac{-16±8i}{16} when ± is minus. Subtract 8i from -16.
x=-1-\frac{1}{2}i
Divide -16-8i by 16.
x=-1+\frac{1}{2}i x=-1-\frac{1}{2}i
The equation is now solved.
4x^{2}+4x+1+\left(2x+3\right)^{2}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1+4x^{2}+12x+9=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
8x^{2}+4x+1+12x+9=0
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
8x^{2}+16x+1+9=0
Combine 4x and 12x to get 16x.
8x^{2}+16x+10=0
Add 1 and 9 to get 10.
8x^{2}+16x=-10
Subtract 10 from both sides. Anything subtracted from zero gives its negation.
\frac{8x^{2}+16x}{8}=-\frac{10}{8}
Divide both sides by 8.
x^{2}+\frac{16}{8}x=-\frac{10}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}+2x=-\frac{10}{8}
Divide 16 by 8.
x^{2}+2x=-\frac{5}{4}
Reduce the fraction \frac{-10}{8} to lowest terms by extracting and canceling out 2.
x^{2}+2x+1^{2}=-\frac{5}{4}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=-\frac{5}{4}+1
Square 1.
x^{2}+2x+1=-\frac{1}{4}
Add -\frac{5}{4} to 1.
\left(x+1\right)^{2}=-\frac{1}{4}
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{-\frac{1}{4}}
Take the square root of both sides of the equation.
x+1=\frac{1}{2}i x+1=-\frac{1}{2}i
Simplify.
x=-1+\frac{1}{2}i x=-1-\frac{1}{2}i
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}