Solve for x
x=\frac{\sqrt{57}}{3}+1\approx 3.516611478
x=-\frac{\sqrt{57}}{3}+1\approx -1.516611478
Graph
Share
Copied to clipboard
2x+1=3x^{2}-4x-15
Use the distributive property to multiply x-3 by 3x+5 and combine like terms.
2x+1-3x^{2}=-4x-15
Subtract 3x^{2} from both sides.
2x+1-3x^{2}+4x=-15
Add 4x to both sides.
6x+1-3x^{2}=-15
Combine 2x and 4x to get 6x.
6x+1-3x^{2}+15=0
Add 15 to both sides.
6x+16-3x^{2}=0
Add 1 and 15 to get 16.
-3x^{2}+6x+16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{6^{2}-4\left(-3\right)\times 16}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 6 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-3\right)\times 16}}{2\left(-3\right)}
Square 6.
x=\frac{-6±\sqrt{36+12\times 16}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-6±\sqrt{36+192}}{2\left(-3\right)}
Multiply 12 times 16.
x=\frac{-6±\sqrt{228}}{2\left(-3\right)}
Add 36 to 192.
x=\frac{-6±2\sqrt{57}}{2\left(-3\right)}
Take the square root of 228.
x=\frac{-6±2\sqrt{57}}{-6}
Multiply 2 times -3.
x=\frac{2\sqrt{57}-6}{-6}
Now solve the equation x=\frac{-6±2\sqrt{57}}{-6} when ± is plus. Add -6 to 2\sqrt{57}.
x=-\frac{\sqrt{57}}{3}+1
Divide -6+2\sqrt{57} by -6.
x=\frac{-2\sqrt{57}-6}{-6}
Now solve the equation x=\frac{-6±2\sqrt{57}}{-6} when ± is minus. Subtract 2\sqrt{57} from -6.
x=\frac{\sqrt{57}}{3}+1
Divide -6-2\sqrt{57} by -6.
x=-\frac{\sqrt{57}}{3}+1 x=\frac{\sqrt{57}}{3}+1
The equation is now solved.
2x+1=3x^{2}-4x-15
Use the distributive property to multiply x-3 by 3x+5 and combine like terms.
2x+1-3x^{2}=-4x-15
Subtract 3x^{2} from both sides.
2x+1-3x^{2}+4x=-15
Add 4x to both sides.
6x+1-3x^{2}=-15
Combine 2x and 4x to get 6x.
6x-3x^{2}=-15-1
Subtract 1 from both sides.
6x-3x^{2}=-16
Subtract 1 from -15 to get -16.
-3x^{2}+6x=-16
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+6x}{-3}=-\frac{16}{-3}
Divide both sides by -3.
x^{2}+\frac{6}{-3}x=-\frac{16}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-2x=-\frac{16}{-3}
Divide 6 by -3.
x^{2}-2x=\frac{16}{3}
Divide -16 by -3.
x^{2}-2x+1=\frac{16}{3}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=\frac{19}{3}
Add \frac{16}{3} to 1.
\left(x-1\right)^{2}=\frac{19}{3}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{19}{3}}
Take the square root of both sides of the equation.
x-1=\frac{\sqrt{57}}{3} x-1=-\frac{\sqrt{57}}{3}
Simplify.
x=\frac{\sqrt{57}}{3}+1 x=-\frac{\sqrt{57}}{3}+1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}