Solve for x (complex solution)
x=\frac{-\sqrt{71}i-3}{8}\approx -0.375-1.053268722i
x=\frac{-3+\sqrt{71}i}{8}\approx -0.375+1.053268722i
Graph
Quiz
Polynomial
5 problems similar to:
( 2 x + \frac { 3 } { 4 } ) ^ { 2 } - \frac { 9 } { 16 } + 5 = 0
Share
Copied to clipboard
\left(2x+\frac{3}{4}\right)^{2}=-\frac{71}{16}
Subtracting \frac{71}{16} from itself leaves 0.
2x+\frac{3}{4}=\frac{\sqrt{71}i}{4} 2x+\frac{3}{4}=-\frac{\sqrt{71}i}{4}
Take the square root of both sides of the equation.
2x+\frac{3}{4}-\frac{3}{4}=\frac{\sqrt{71}i}{4}-\frac{3}{4} 2x+\frac{3}{4}-\frac{3}{4}=-\frac{\sqrt{71}i}{4}-\frac{3}{4}
Subtract \frac{3}{4} from both sides of the equation.
2x=\frac{\sqrt{71}i}{4}-\frac{3}{4} 2x=-\frac{\sqrt{71}i}{4}-\frac{3}{4}
Subtracting \frac{3}{4} from itself leaves 0.
2x=\frac{-3+\sqrt{71}i}{4}
Subtract \frac{3}{4} from \frac{i\sqrt{71}}{4}.
2x=\frac{-\sqrt{71}i-3}{4}
Subtract \frac{3}{4} from -\frac{i\sqrt{71}}{4}.
\frac{2x}{2}=\frac{-3+\sqrt{71}i}{2\times 4} \frac{2x}{2}=\frac{-\sqrt{71}i-3}{2\times 4}
Divide both sides by 2.
x=\frac{-3+\sqrt{71}i}{2\times 4} x=\frac{-\sqrt{71}i-3}{2\times 4}
Dividing by 2 undoes the multiplication by 2.
x=\frac{-3+\sqrt{71}i}{8}
Divide \frac{i\sqrt{71}-3}{4} by 2.
x=\frac{-\sqrt{71}i-3}{8}
Divide \frac{-i\sqrt{71}-3}{4} by 2.
x=\frac{-3+\sqrt{71}i}{8} x=\frac{-\sqrt{71}i-3}{8}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}