Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2x+\frac{3}{4}\right)^{2}=-\frac{71}{16}
Subtracting \frac{71}{16} from itself leaves 0.
2x+\frac{3}{4}=\frac{\sqrt{71}i}{4} 2x+\frac{3}{4}=-\frac{\sqrt{71}i}{4}
Take the square root of both sides of the equation.
2x+\frac{3}{4}-\frac{3}{4}=\frac{\sqrt{71}i}{4}-\frac{3}{4} 2x+\frac{3}{4}-\frac{3}{4}=-\frac{\sqrt{71}i}{4}-\frac{3}{4}
Subtract \frac{3}{4} from both sides of the equation.
2x=\frac{\sqrt{71}i}{4}-\frac{3}{4} 2x=-\frac{\sqrt{71}i}{4}-\frac{3}{4}
Subtracting \frac{3}{4} from itself leaves 0.
2x=\frac{-3+\sqrt{71}i}{4}
Subtract \frac{3}{4} from \frac{i\sqrt{71}}{4}.
2x=\frac{-\sqrt{71}i-3}{4}
Subtract \frac{3}{4} from -\frac{i\sqrt{71}}{4}.
\frac{2x}{2}=\frac{-3+\sqrt{71}i}{2\times 4} \frac{2x}{2}=\frac{-\sqrt{71}i-3}{2\times 4}
Divide both sides by 2.
x=\frac{-3+\sqrt{71}i}{2\times 4} x=\frac{-\sqrt{71}i-3}{2\times 4}
Dividing by 2 undoes the multiplication by 2.
x=\frac{-3+\sqrt{71}i}{8}
Divide \frac{i\sqrt{71}-3}{4} by 2.
x=\frac{-\sqrt{71}i-3}{8}
Divide \frac{-i\sqrt{71}-3}{4} by 2.
x=\frac{-3+\sqrt{71}i}{8} x=\frac{-\sqrt{71}i-3}{8}
The equation is now solved.