Evaluate
8x^{3}+\frac{1}{x^{3}}
Expand
8x^{3}+\frac{1}{x^{3}}
Graph
Share
Copied to clipboard
\left(\frac{2xx}{x}+\frac{1}{x}\right)\left(4x^{2}+\frac{1}{x^{2}}-2\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2x times \frac{x}{x}.
\frac{2xx+1}{x}\left(4x^{2}+\frac{1}{x^{2}}-2\right)
Since \frac{2xx}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
\frac{2x^{2}+1}{x}\left(4x^{2}+\frac{1}{x^{2}}-2\right)
Do the multiplications in 2xx+1.
\frac{2x^{2}+1}{x}\left(\frac{\left(4x^{2}-2\right)x^{2}}{x^{2}}+\frac{1}{x^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 4x^{2}-2 times \frac{x^{2}}{x^{2}}.
\frac{2x^{2}+1}{x}\times \frac{\left(4x^{2}-2\right)x^{2}+1}{x^{2}}
Since \frac{\left(4x^{2}-2\right)x^{2}}{x^{2}} and \frac{1}{x^{2}} have the same denominator, add them by adding their numerators.
\frac{2x^{2}+1}{x}\times \frac{4x^{4}-2x^{2}+1}{x^{2}}
Do the multiplications in \left(4x^{2}-2\right)x^{2}+1.
\frac{\left(2x^{2}+1\right)\left(4x^{4}-2x^{2}+1\right)}{xx^{2}}
Multiply \frac{2x^{2}+1}{x} times \frac{4x^{4}-2x^{2}+1}{x^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(2x^{2}+1\right)\left(4x^{4}-2x^{2}+1\right)}{x^{3}}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{8x^{6}+1}{x^{3}}
Use the distributive property to multiply 2x^{2}+1 by 4x^{4}-2x^{2}+1 and combine like terms.
\left(\frac{2xx}{x}+\frac{1}{x}\right)\left(4x^{2}+\frac{1}{x^{2}}-2\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2x times \frac{x}{x}.
\frac{2xx+1}{x}\left(4x^{2}+\frac{1}{x^{2}}-2\right)
Since \frac{2xx}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
\frac{2x^{2}+1}{x}\left(4x^{2}+\frac{1}{x^{2}}-2\right)
Do the multiplications in 2xx+1.
\frac{2x^{2}+1}{x}\left(\frac{\left(4x^{2}-2\right)x^{2}}{x^{2}}+\frac{1}{x^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 4x^{2}-2 times \frac{x^{2}}{x^{2}}.
\frac{2x^{2}+1}{x}\times \frac{\left(4x^{2}-2\right)x^{2}+1}{x^{2}}
Since \frac{\left(4x^{2}-2\right)x^{2}}{x^{2}} and \frac{1}{x^{2}} have the same denominator, add them by adding their numerators.
\frac{2x^{2}+1}{x}\times \frac{4x^{4}-2x^{2}+1}{x^{2}}
Do the multiplications in \left(4x^{2}-2\right)x^{2}+1.
\frac{\left(2x^{2}+1\right)\left(4x^{4}-2x^{2}+1\right)}{xx^{2}}
Multiply \frac{2x^{2}+1}{x} times \frac{4x^{4}-2x^{2}+1}{x^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(2x^{2}+1\right)\left(4x^{4}-2x^{2}+1\right)}{x^{3}}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{8x^{6}+1}{x^{3}}
Use the distributive property to multiply 2x^{2}+1 by 4x^{4}-2x^{2}+1 and combine like terms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}