Evaluate
34x^{2}+7wx-w^{2}
Expand
34x^{2}+7wx-w^{2}
Graph
Share
Copied to clipboard
2w^{2}-10wx+3xw-15x^{2}-\left(3w+7x\right)\left(w-7x\right)
Apply the distributive property by multiplying each term of 2w+3x by each term of w-5x.
2w^{2}-7wx-15x^{2}-\left(3w+7x\right)\left(w-7x\right)
Combine -10wx and 3xw to get -7wx.
2w^{2}-7wx-15x^{2}-\left(3w^{2}-21wx+7xw-49x^{2}\right)
Apply the distributive property by multiplying each term of 3w+7x by each term of w-7x.
2w^{2}-7wx-15x^{2}-\left(3w^{2}-14wx-49x^{2}\right)
Combine -21wx and 7xw to get -14wx.
2w^{2}-7wx-15x^{2}-3w^{2}-\left(-14wx\right)-\left(-49x^{2}\right)
To find the opposite of 3w^{2}-14wx-49x^{2}, find the opposite of each term.
2w^{2}-7wx-15x^{2}-3w^{2}+14wx-\left(-49x^{2}\right)
The opposite of -14wx is 14wx.
2w^{2}-7wx-15x^{2}-3w^{2}+14wx+49x^{2}
The opposite of -49x^{2} is 49x^{2}.
-w^{2}-7wx-15x^{2}+14wx+49x^{2}
Combine 2w^{2} and -3w^{2} to get -w^{2}.
-w^{2}+7wx-15x^{2}+49x^{2}
Combine -7wx and 14wx to get 7wx.
-w^{2}+7wx+34x^{2}
Combine -15x^{2} and 49x^{2} to get 34x^{2}.
2w^{2}-10wx+3xw-15x^{2}-\left(3w+7x\right)\left(w-7x\right)
Apply the distributive property by multiplying each term of 2w+3x by each term of w-5x.
2w^{2}-7wx-15x^{2}-\left(3w+7x\right)\left(w-7x\right)
Combine -10wx and 3xw to get -7wx.
2w^{2}-7wx-15x^{2}-\left(3w^{2}-21wx+7xw-49x^{2}\right)
Apply the distributive property by multiplying each term of 3w+7x by each term of w-7x.
2w^{2}-7wx-15x^{2}-\left(3w^{2}-14wx-49x^{2}\right)
Combine -21wx and 7xw to get -14wx.
2w^{2}-7wx-15x^{2}-3w^{2}-\left(-14wx\right)-\left(-49x^{2}\right)
To find the opposite of 3w^{2}-14wx-49x^{2}, find the opposite of each term.
2w^{2}-7wx-15x^{2}-3w^{2}+14wx-\left(-49x^{2}\right)
The opposite of -14wx is 14wx.
2w^{2}-7wx-15x^{2}-3w^{2}+14wx+49x^{2}
The opposite of -49x^{2} is 49x^{2}.
-w^{2}-7wx-15x^{2}+14wx+49x^{2}
Combine 2w^{2} and -3w^{2} to get -w^{2}.
-w^{2}+7wx-15x^{2}+49x^{2}
Combine -7wx and 14wx to get 7wx.
-w^{2}+7wx+34x^{2}
Combine -15x^{2} and 49x^{2} to get 34x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}