Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

5u^{2}-6u-7-5u+4
Combine 2u^{2} and 3u^{2} to get 5u^{2}.
5u^{2}-11u-7+4
Combine -6u and -5u to get -11u.
5u^{2}-11u-3
Add -7 and 4 to get -3.
factor(5u^{2}-6u-7-5u+4)
Combine 2u^{2} and 3u^{2} to get 5u^{2}.
factor(5u^{2}-11u-7+4)
Combine -6u and -5u to get -11u.
factor(5u^{2}-11u-3)
Add -7 and 4 to get -3.
5u^{2}-11u-3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
u=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 5\left(-3\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
u=\frac{-\left(-11\right)±\sqrt{121-4\times 5\left(-3\right)}}{2\times 5}
Square -11.
u=\frac{-\left(-11\right)±\sqrt{121-20\left(-3\right)}}{2\times 5}
Multiply -4 times 5.
u=\frac{-\left(-11\right)±\sqrt{121+60}}{2\times 5}
Multiply -20 times -3.
u=\frac{-\left(-11\right)±\sqrt{181}}{2\times 5}
Add 121 to 60.
u=\frac{11±\sqrt{181}}{2\times 5}
The opposite of -11 is 11.
u=\frac{11±\sqrt{181}}{10}
Multiply 2 times 5.
u=\frac{\sqrt{181}+11}{10}
Now solve the equation u=\frac{11±\sqrt{181}}{10} when ± is plus. Add 11 to \sqrt{181}.
u=\frac{11-\sqrt{181}}{10}
Now solve the equation u=\frac{11±\sqrt{181}}{10} when ± is minus. Subtract \sqrt{181} from 11.
5u^{2}-11u-3=5\left(u-\frac{\sqrt{181}+11}{10}\right)\left(u-\frac{11-\sqrt{181}}{10}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{11+\sqrt{181}}{10} for x_{1} and \frac{11-\sqrt{181}}{10} for x_{2}.