Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

9u^{2}-6u-3-5u+1
Combine 2u^{2} and 7u^{2} to get 9u^{2}.
9u^{2}-11u-3+1
Combine -6u and -5u to get -11u.
9u^{2}-11u-2
Add -3 and 1 to get -2.
factor(9u^{2}-6u-3-5u+1)
Combine 2u^{2} and 7u^{2} to get 9u^{2}.
factor(9u^{2}-11u-3+1)
Combine -6u and -5u to get -11u.
factor(9u^{2}-11u-2)
Add -3 and 1 to get -2.
9u^{2}-11u-2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
u=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 9\left(-2\right)}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
u=\frac{-\left(-11\right)±\sqrt{121-4\times 9\left(-2\right)}}{2\times 9}
Square -11.
u=\frac{-\left(-11\right)±\sqrt{121-36\left(-2\right)}}{2\times 9}
Multiply -4 times 9.
u=\frac{-\left(-11\right)±\sqrt{121+72}}{2\times 9}
Multiply -36 times -2.
u=\frac{-\left(-11\right)±\sqrt{193}}{2\times 9}
Add 121 to 72.
u=\frac{11±\sqrt{193}}{2\times 9}
The opposite of -11 is 11.
u=\frac{11±\sqrt{193}}{18}
Multiply 2 times 9.
u=\frac{\sqrt{193}+11}{18}
Now solve the equation u=\frac{11±\sqrt{193}}{18} when ± is plus. Add 11 to \sqrt{193}.
u=\frac{11-\sqrt{193}}{18}
Now solve the equation u=\frac{11±\sqrt{193}}{18} when ± is minus. Subtract \sqrt{193} from 11.
9u^{2}-11u-2=9\left(u-\frac{\sqrt{193}+11}{18}\right)\left(u-\frac{11-\sqrt{193}}{18}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{11+\sqrt{193}}{18} for x_{1} and \frac{11-\sqrt{193}}{18} for x_{2}.